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PREFACE

This monograph entitled '"he Finite Analytic Method and Its Applications" contains the
continuing developments of the numerical method called the "finite analytic" method. The finite
analytic method was developed in early 1977 when I and Dr. Peter Li, then a graduate student, had
difficulty in obtaining a converged solution from a system of finite difference algebraic equations
derived for the Navier-Stokes equations for two-dimensional turbulent flow with a second order
turbulence model. I conceived the finite analytic method one night and solved the simple two-
dimensional Laplace equation. Dr. Li then carried the finite analytic method to the unsteady
diffusion equation and nonlinear ordinary differential equation. The basic idea of the finite analytic
method is to derive the approximate algebraic representation of a governing linear or nonlinear
differential equation from the local analytic solution. The local analytic solution is obtained for a
small element of the total solution domain in which the governing equation, if nonlinear, is
linearized. The local analytic solution is then expressed in an algebraic form. The system of local
analytic algebraic equations is solved to provide the numerical solution of the problem.

Subsequently, in a span of ten years, many students took interest in the development of the
finite analytic method and its applications to fluid mechanics and heat transfer problems. They are
Hamid Naseri-Neshat, Hamn-Ching Chen, Kuo-San Ho, Young Hwan Yoon, Che Hsi Yu, Sen-
Ming Chang, Wenchung Chen, Zahed Mohanmad Sheikholeslani, Tzong-Shyan Wung, Wu Sun
Chen, Kemakolam Obasih, Seok Ki Choi, Vahid Talaie, Ramiro Humberto Bravo, and Hakan
Aksoy. They all contributed to the further development of the finite analytic method. In 1983 a
monograph entitled "Ihe Finite Analytic Method" was published as part of the Iowa Institute of
Hydraulic Research Report. There are a total of seven volumes in the monograph entitled 'The
Finite Analytic Method." The special feature of the finite analytic method is that when it is applied
to solve the Navier-Stokes equations, it provides relatively accurate representations of the
convection term. The finite analytic method not only provides accurate simulation of the
upwinding effect because of its analytic nature of the solutions, but it also provides automatic,
gradual shifts of the upwinding. Consequently, the finite analytic numerical solutions of
convection diffusion equations minimize the false numerical diffusion that would occur in the
upwinding difference used in other numerical methods and provide stable and fast convergency of
the solutions.

Six years have passed since the publication of the monograph entitled 'Finite Analytic
Method." During these years the emphasis has been to apply the finite analytic method to various
problems and to develop a more friendly code for users. This monograph thus is developed to
document the efforts made in the applications of the finite analytic method along with its further
improvements.

I would like to thank my colleagues, V.C. Patel, K.B. Chandran, T.F. Smith, A. T. Chwang,
F. Stern, and K. Atkinson for their interest in the development and application of the finite analytic
method. I would like to acknowledge the support of Drs. William D. McNally, Peter M Sockol,
Gary Johnson, and JJ. Adamczyk of NASA Lewis Center for their support in the early
development of the finite analytic method. My thanks also go to Dr. Oscar P. Manley of the U.S.
Department of Energy for his support of the application of the finite analytic method in energy
related problems. Recent applications of the finite analytic method to ship hydrodynamics
problems have been supported by the Navy GHR Grant No. N0014-84-0068, by the Naval Sea
System Command GHR Grant No. N00168-86-J-0019 administered by the David Taylor Naval
Ship Research and Development Center, and by a recent grant from the Office of Naval Research
under the Applied Hydrodynamics Research Grant No. N00167-86-K-0019.



In Volume I of the Finite Analytic Method and Its Application, laminar and turbulent flows
past a two-dimensional and axisymmeric body are studied. I would like to thank Dr. Seok Ki
Choi for applying the finite analytic method to complex flow problems. Without his participation,
the finite analytic method would not have been developed and understood as it is today. I shall behappy to receive any discussion or criticism on the finite analytic method. I attempt to present the
finite analytic method and its applications in a systematic documentation. Whenever possible, all
the listings of the codes developed associated with the finite analytic method are enclosed so that

readers may apply the finite analytic method in their problems.
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Accession For Professor and Chairman,
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ABSTRACT

A numerical study of laminar and turbulent flows past

two dimensional bodies and axisymmetric bodies is presented.

Numerical methods are developed to solve Navier-Stokes

equations for two dimensional and axisymmetric flows in the

arbitrary geometries. The complex physical geometry is

resolved by use of numerically generated, body-fitted

coordinates. The governing equations are written in the

transformed domain using the orthogonal velocity components

as dependent variables for momentum equations. The governing

equations are discretized using both the finite analytic

method and the finite volume method. Both one velocity

staggered grid method and two velocities staggered method are

employed for grid arrangements. The velocity and pressure

coupling techniques in these grid arrangements are presented.

The solution procedure of the SIMPLER numerical algorithm is

used with a parabolic marching technique and a global

pressure calculation method. For turbulent flow

calculations, both the k - e turbulence model and the two-

layer turbulence model are used.

Calculations are performed for laminar and turbulent

flows past a finite flat plate and turbulent flow past
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axisymmetric bodies with different solution domains,

numerical methods and turbulence models. Calculations

include the development of a wake function method for the

prediction of turbulent wake of a flat plate, predictions of

laminar and turbulent flows past a finite flat plate,

predictions of turbulent flow past axisymmetric bodies by the

wall function method and by the two-layer turbulence model

and predictions of turbulent flow past finite axisymmetric

bodies. Comparisions of predictions by finite analytic

method with those by finite volume method are made for some

calculations. All the predicted results were compared with

available experimental measurements. Good agreements between

the predicted results and measured data were obtained.
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1

CHAPTER I

INTRODUCTION

.1 Purpose of Study

Recent demands in advanced ship design have prompted

many researchers to study flow past ship propulsion

systems. Since most ship propellers are located at the

downstream end of ship body, the study of flow past ship

bodies is important for the design of optimal ship shape

and propellers. However, the present state-of-the-art of

prediction methods of flow past complex geometries is not

yet capable of caculating the entire flow field past ship

bodies. The investigations of flows past axisymmetric

bodies can provide a fundamental understanding of flow

field past more complex ship bodies. Studies of fluid

flows past two dimensional bodies such as hydrofoils and

appendages are also important for ship design since the

understanding of flow field past appendages will provide

more realistic simulation of inlet flow conditions for the

propeller.

The purpose of the present study is to develop

numerical calculation methods for predicting laminar and
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turbulent flows past two dimensional and axisymmetric

bodies. The present study starts with the prediction of

laminar and turbulent flows past a thin flat plate and

then turbulent flows past axisymmetric bodies of DTNSRDC

(David Taylor Naval Ship Research and Development Center)

are investigated in detail. These geometries are chosen

not only because their geometries approximately resemble

the appendages or ship body but also because of the

availability of extensive experimental data to compare

with the predicted results. The shapes of these bodies

are presented with generated numerical grid in the

following chapter.

In the following sections, the theoretical backgroud

of present investigation is presented. It includes the

review of numerical methods, grid generation techniques,

calculation methods for incompressible flow in arbitrary

geometry, and turbulence model.

1.2 Theoretical Background

Fluid flows past two dimensional or axisymmetric

bodies are also encountered in a variety of practical

engineering applications, for example, aerodynamics and

turbomachineries. The most reliable information may be

obtained by direct measurements. However, experimental
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investigations are in most case expensive and time

consuming. There also exist difficulties of measurement

in many situations, and measuring instruments are not free

from errors.

On the other hand, with the rapid development of

computer technology in computational speed and size of

storage, the computational methods became practical to

simulate various flow phenomena encountered in many

engineering problems. During the past twenty years, the

computational methods for incompressible flow have been

rapidly developed accompanied with the advances of

practict±l turbulence model. Various computational methods

have been proposed, tested and refined to a stage which

may significantly impact the design of many engineering

problems. Engineers and researchers begin to realize that

the CFD (Computational Fluid Dynamics) is perhaps a cost

effective and convenient way of analyzing the complex

engineering problems.

Two numerical methodologies are the most commonly

employed and developed, namely finite difference method

and finite element method. Most flows in the engineering

problems have rather arbitrary geometries. When the

practical usage of calculation methods in arbitrary

geometry is considered, the finite element method appears
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to be the natural choice. However, the finite element

method still has unresolved difficulties in the simulation

of fluid flow phenomena although this method is widely

used in other areas such as solid mechanics. By its

rather simplicity and efficiency, the finite difference

method has been the most widely used in the computational

fluid dynamics. Among the various finite difference

methods, the method developed by Patankar and Spalding

[1,2] seems to be the most popular in the calculation of

incompressible flows.

In addition to the finite difference method and the

finite element method, a finite analytic method has been

developed by Chen and Chen [3]. This method has been

tested for the several practical engineering problems

(4,5,6) and proved to be accurate and stable. In the

finite analytic method, the algebraic representation of a

certain nodal value with neighbouring nodal values are

obtained by a local analytic solution of the governing

equation. The novel nature of this method is that the

numerical false diffusion problem in solving the Navier-

Stokes equations, which is considered as the most serious

problem for nearly all the numerical schemes of finite

difference method, is satisfactorily minimized by using

all the surrounding nodal points. The well developed

calculation procedure for the finite difference method in
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solving the Naviers-Stokes equations can be readily

applied to finite analytic method without any

difficulties. Both the finite analytic method and finite

difference mothod are used for the several calculations

presented in this study. Comparisions of predictions by

these two methods are given for certain problems.

Recently, several calculation methods have been

developed that employ boundary-fitted, curvilinear

coordinate to appropriately handle fluid problems in

complex geometries. The technique of generating an

appropriate boundary fitted curvilinear coordinate and the

development of related calculation procedure associated

with using the curvilinear coordinate system have been

subjects of numerous studies. Although the calculation

methods for incompressible flow in the orthogonal grid

system have been well developed and refined, those for

non-orthogonal grid system seem to be not yet fully

established. Detailed discussion of currently available

calculation methods for incompressible flow associated

with using the curvilinear coordinte system will be given

in the following section.

Due to its importance in the engineering application,

several numerical and experimental studies of laminar and

turbulent flows past two dimensional or axisymmetric
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bodies have been made during the last decade. Since this

problem includes the leading edge interaction, boundary

layer development on the body, the trailing edge

interaction and wake development, it has been subject of

testing of several calculation methods and turbulence

models. At present, several reliable experimental

informations are available which can be used to verify the

accuracy of the calculation schemes or turbulence models.

Detailed discussion of previous numerical and experimental

studies is given in the chapter where each specific

problem is mentioned.

Previous numerical and experimental studies indicate

that although the first order boundary layer theory

adequately describes flow fields over the middle of body,

it fails to describe flow fields near the leading and

trailing edge of a body and near the tail region of

axisymmetric bodies. Two calculation methods have been

widely used in order to appropriately handle these flow

situations. The first method is the viscous-inviscid

interaction method in which boundary layer solutions are

matched with the external inviscid flows by interactive

means. The second approach is the global numerical

solutions of elliptic or partially parabolic form of

Navier-Stokes equations. The latter approach is more

attractive since it does not require another numerical
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solution of inviscid flow and is adopted in the present

study.

In many previous numerical studies of flow past ship

bodies, calculations are started either at the middle of

the body or at the trailing edge of the body with upstream

conditions specified by well documented profiles from

boundary layer theory or experimental data. Since these

calculations do not include the leading edge interaction

and initial development of boundary layer over the body,

the resulting solutions are dependent on the upstream

conditions or the location of upstream solution boundary.

A more reliable numerical solution may be obtained by

including the leading edge within the solution domain with

prescribing uniform flow conditions at the inlet and with

the solution domain large enough to capture the whole

viscous-inviscid interaction. However, inclusion of

leading edge in the solution domain may cause the

difficulties of turbulence modelling in the transition

region for turbulent flow calculation. In the present

study, the upstream solution boundary is made to locate

either at the uniform flow region far upstream of body or

at the middle of the body according to the objective of

the problem considered.
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Since the problems considered in the present study

have rather arbitrary geometries which require the use of

boundary-fitted curvilinear coordinate system, a brief

review of methods for the generation of boundary-fitted

coordinates and available calculation methods for

incompressible flow in arbitrary geometryis is presented.

A brief discussion of available turbulence models will be

also presented.

1.3 Generation of Boundary-Fitted Coordinates

A boundary-fitted coordinate system is defined as a

curvilinear coordinate system in which the boundaries of

the physical domain concide with a curvilinear coordinate

line or surface. The generation of an appropriate

computational grid is very important in order to achieve

the accuracy and better convergence of numerical solution.

Boundary-fitted curvilinear coordinates can be generated

orthogonally or non-orthogonally. The orthogonal grid has

the advantages that the transformed partial differential

equations are simpler as the non-orthogonal terms do not

appear. This advantage results in fewer computing time,

fast convergence as well as better stability and accuracy

of the solution. However, orthogonal coordinates are

often difficult to generate and it is sometimes impossible
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to generate the orthogonal coordinate for the three

dimensional situations. An additional disadvantage for

the generation of orthogonal coordinate is the fact that

there is no control on the location of the grid points

along the boundary which may deteriorate the grid spacing

near thp solid boundary where the appropriate grid spacing

is required. Non-orthogonal coordinates are much easier

to generate and can be produced also for three dimensional

situations. Further, concentration of grid lines in the

regions where good resolution is required is much easier

to achieve. However, non-orthogonal coordinate introduce

additional terms such as cross derivatives which may

reduce both convergence and stability of numerical

solution and, thereby, increase the computing time.

There exist several ways of the generating boundary-

fitted coordinates. The available grid generation

techniques can be broadly classified into two categories,

algebraic methods and partial differential equation

methods. The multi-surface technique of Eiseman (7] is a

typical method for algebraic method in which simple

functions are combined to generate grids for complex

geometries. In this approach, the grid is generated by

joining corresponding points on the inner and outer

boundaries by polynomial curves. In general, the

algebraic grid generation techniques are very attractive
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by the reasons that they do not require a numerical

solution of partial differential equations and a precise

control over the grid spacing is possible. However, when

this method is applied to a complex geometry, non-

smoothing grids may be produced.

Boundary-fitted coordinates can also be generated by

the solution of partial differential equations in which

the dependent variables are the grid coordinates in the

physical domain. Conformal mapping is a special case of

grid generation technique using the Laplace equation.

Much of the works have been done by Thompson and his

coworkers [8]. The spacing between the grid lines is

strongly dependent on the equations being solved and

weakly dependent on the boundary point distributions. The

equations can be easily changed by varying the values of

the source term or the grid control functions in the

Poisson equations. These grid control functions can be

selected to appropriately attract the coordinate line

toward particular grid points or grid lines or repel the

coordinate lines. Thompson et al. [8] have suggested a

series of exponential functions as source terms. However,

the selection of grid control function is quite dependent

on the problem being solved.
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In the present study, all the numerical grids are

generated by the solution of the Poisson type of partial

differential equations with grid control functions

specified properly depending on the physical situations

being solved. Details of grid generation techniques

adopted in the present study are given in chapter-II.

1.4 Calculation Methods for Incompressible Flow in
ComPlex Geometries

1.4.1 Calculation Methods for Incompressible Flow in
Orthogonal Coordinate System

The computational method for the prediction of fluid

flow in the orthogonal grid system is well developed and

have been widely used for a variety of problems. The

orthogonal grid based calculation method is not much

depart from that for Cartesian counterparts. The well

developed calculation procedure for Cartesian coordinate

system can be easily modified with a proper specification

of geometric coefficients and source terms. Most of

previous calculations use the staggered grid arrangement

and the velocity components normal to the control volume

surfaces (contravariant velocity components) are selected

as the dependent variables in the momentum equations.
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Pope (91 used such a orthogonal based calculation

procedure to compute turbulent recirculating flows in

diffusers, Gosman and Rapley (101 applied a similiar

method to the calculation of fully developed flow in the

ducts of arbitrary cross section. Recently, Raithby et

al. [11] have presented a new calculation procedure in

which the stresses are retained in the discretization

equation instead of the usual procedure of substituting

them in terms of strain rates.

However, the orthogonal coordinate based methods have

limitations in the application due to the difficulty of

generating appropriate numerical grid. For the sake of

general application, the calculation methods for non-

orthogonal coordinate system should be investigated.

1.4.2 Calculation Methods for Incompressible Flow in
Non-orthogonal Coordinate System

Unlike the orthogonal coordinate based methods,

several calculation methods for the non-orthogonal

coordinate system have been proposed during the late 1970s

and during the 1980s. The differences among these methods

are the choice of dependent variables in the momentum

equations, the grid arrangements and the treatment of

pressure and velocity coupling. One interesting fact is

that none of these methods have superiority over other
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methods to justify its general usage. Each of the methods

has its own merits and demerits which should be judged in

terms of the problem being considered. As compared with

the method based on the orthogonal coordinate system,

these methods are still in a developing stage. Among the

several calculation methods based on non-orthogoal

coordinate system, five typical methods which use

different grid arrangements or dependent varibles as shown

in Fig.I-1 are discussed below.

Non-Staggered Grid Method

In the first grid arrangement, which is shown in the

Fig.I-l-a, all the dependent variables are computed and

stored at the same location and the Cartesian velocity

components are used as dependent variables in the momentum

equation. This method has been named differently

according to the author's choice. For example, P -

scheme by Hsu (12]; Momentum Interpolation Method by

Majumdar [13]; Pressure Weighted Interpolation Method by

Miller and Schmidt [14]; Collocation Method by Peric et

al. [15]; and, Non-Staggered Grid Method by Rhie and Chow

[16]. Since this method uses Cartesian velocity

components as dependent variables for the momentum

equation, the governing equation is simple and the

curvature terms which are extremely grid dependent can be
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avoided. Moreover, a strongly conservative form of

transport equation is possible which is a desired

characteristics for finite volume method. As is discussed

in Patankar [2], this grid arrangement may give rise to a

checkerboard pressure oscillation. To overcome this

checkerboard splitting of pressure field, a special kind

of interpolation method for evaluating velocity components

at the control volume cell surface has been devised. All

the transport equations are solved at the center point of

control volume cell and the cell surface velocities for

the derivation of pressure or pressure correction equation

are obtained by a linear interpolation using neighbouring

nodal values except the pressure gradient term in the

momentum equation is evaluated by the method employed in

the staggered grid approach to prevent the splitting of

the pressure field. Thus, this method indirectly uses the

staggering idea and it was questioned that this method can

be named as non-staggered method [17]. Since all the

variables are calculated at the same point, the

coefficients of algebraic equations are the same for all

the variables which may reduce the computer storage and

computing time, especially for the three dimensional

situations. This feature will lead to more cost effective

calculation when the multigrid method is employed. The

earlier method by Rhie and Chow [16] or Peric [18] has
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been blamed for the fact that the resulting converged

solution is quite relaxation factor or time step

dependent. Recently, Majumdar [13,19] and Miller and

Schmidt (14] removed this problem by a rigorous

derivation. This method has been successfuly applied to a

variety of engineering problems by many researchers.

However, Miller and Schmidt [14] find that this method may

result in a physically unrealistic solution in regions

where there is a strong pressure gradient. This method

also suffers from the lack of diagonal dominance of

pressure correction equation when it is applied to

strongly non-orthogonal grid. This method has been

applied to a variety of problems; Rhie and Chow [16], Rhie

and coworkers [20,21], Peric [18], Han [22], Majumdar

[13,19], Majumdar et al. [17], Rodi et al. [23], Miller

and Schmidt [14] and Peric et al. (15]. An excellent

discussion of this method is given in Majumdar et al.

[17].

One Velocity Staggered Grid Method

Shyy et al. [24] developed a calculation method

employing the conventional staggered grid usually adopted

in the Cartesian coordinate system. As shown in the

Fig.I-1-b, the dependent variables in the momentum

equations are the Cartesian velocity components and only
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one velocity component is stored at the each cell surface.

Since only one velocity component is available at each

cell surface, the other unavailable velocity component

which is necessary to compute the mass flow rate is

usually obtained through the linear interpolation of

neighbouring velocity components which are obtained in the

previous iteration. In addition to this defficiency,

further approximations have to be made, for example

neglection of non-orthogonal pressure gradient terms, to

provide the diagonal dominant pressure correction equation

in strongly non-othorgonal grid. A more serious drawback

of this method is that if the flow direction is normal to

the direction of velocity component stored at the cell

surface, zero convective mass fluxes across the control

volume faces may occur and the pressure gradient driving

the velocity components will be completely wrong, which

may cause undesired pressure splitting. However, use of

this method is justified when the flow direction is not

much deviated from the direction of velocity components

stored at the cell surface. Due to the simplicity of this

method, many researchers used this method for the problem

to which this method can be applied. For example, Braaten

and Shyy [251, Nakayama [26], Ha [27], Chen and Patel [4],

Cheng and Chen [5], Obashi and Chen [6], Patel et al. [28]

and Choi and Chen [29].
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Two Velocities Staggered arid Method

Discussions of the previous method suggest that in

order to calculate flow fields around arbitrary

geometries, both of the Cartesian velocity components

should be stored at each cell surface as shown in Fig.I-1-

c, while pressure and turbulent quantities are stored at

the center point of control volume cell. Maliska and

Raithby [30] adopted this configuration in the development

of three dimensional parabolic calculation procedure for

the fluid flow in the arbitrary cross sectioned ducts.

This method is also not free from difficulties. In order

to obtain the diagonal dominant pressure correction

equation in the strongly non-orthogonal grid, the non-

orthogonal pressure gradient term should be neglected.

Storing the two velocity components at each control volume

surface requires a complex programing and more computer

storage and more computing time. These disadvantages

became more grave in three dimensional situations. This

method is not commonly used due to forementioned

disadvantages.

Algebraic Manipulation Method

An alternative to the Cartesian velocity components

is to use the curvilinear velocity components as the
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dependent variables in the momentum equations. The

contravariant or the covariant velocity components will be

the natural choices due to their relationship with the

grid lines. Karki and Patankar [31) developed a

calculation method using covariant velocity components as

the dependent variables in the momentum equations. The

discretization equations and source terms for covariant

velocity components were obtained by the algebraic

manipulation of discretization equation and source terms

based on the Cartesian velocity components. As shown in

the Fig.I-l-e, each covariant velocity component is stored

at the control volume cell surface using staggering idea.

The usage of covariant velocity components as the

dependent variable in the momentum equation enables the

strongly diagonal dominant pressure correction equation

even in the strongly non-orthogonal grid situations. The

complicated tensor algebra is avoided through a novel

algebraic manipulation of discretization equation and the

resulting algebraic equations seem to be cost effective

and less grid dependent. The success of this method is

largely dependent on the accuracy and grid dependency of

the algebraic manipulation of source term of momentum

equation which is considered as the most serious problem

when the contravariant or covariant velocity components

are adopted as a dependent variables. This method should
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be tested for complicated three dimensional situations to

justify its general usage. This method has been

successfully applied to calculation of compressible and

incompressible in two dimensional complex geometries

[32,33]. Detailed study of this method is provided by

Karki [34].

It is worthy to mention the calculation method based

on the full transformation of dependent variables for

momentum equations using a complicated tensor algebra.

Demirdzic et al. (35] developed such a calculation method

using contravariant velocity components as dependent

variables for momentum equations. Fig.I-l-d shows that

the only one contravariant velocity component is stored at

the each control volume cell surface and the staggering

idea is adopted. This method requires a complicated

tensor algebra and more storages for the geometric

coefficients. Moreover, the resulting governing equation

is extremely complicate and the numerical solution is

quite grid dependent. This fact restricts the usage of

this method in certain situations. Like all the methods

discussed previously, this method also gives a nine point

pressure correction equation which lacks diagonal

dominance in strongly non-orthogonal grid situations if

the non-orthogonal pressure gradient terms are not

neglected. The advantage of smaller numerical diffusion
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in this approach must be judged against the serious

disadvantages mentioned above. This method has been used

by few people. For example, Demirdzic et al. £35],

Demirdzic [36], Gal-Chen et al. [37], Stern et al. (38]

and Richmond (39]. An excellent study of this method is

given by Demirdzic [36].

Methods of Vanka et al. [40] and Faghri et al. [41]

deserve to receive attention. However, these methods are

also not free from many difficulties mentioned in the

previous methods and are not commonly used by many

researchers.

The one-velocity staggered grid method is adopted for

the most of calculations of the present study since this

method is very easy to program and the flow direction is

not much deviated from the direction of velocity component

stored at cell surface with an appropriate grid

generation. The two-velocities staggered grid method is

also used for some calculations in the present study with

some modifications made from the original method of

Maliska and Raithby [30).

T.5 Turbulence Models

During the last decade, many turbulence models

ranging from the Prandtl mixing-length model [42] to the k
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- C turbulence model [43] were used for a variety of

practical calculations and tested in order to find out

their range of applicability. Some progress has been

made, but to date no model has been found to be both

accurate and general. The models widely used in

applications have been based on the Boussinesq (1877)

assumption which relates the turbulent stresses to mean

rates of strain by

-ar + a zI I = V t ( axj +xi 3 8ij k (I-1)

where Vt is turbulent eddy viscosity and k is

turbulent kinetic energy.

For a suitable charateristic length scale it and

velocity scale vt, dimensional analysis suggests that

turbulent eddy viscosity Vt can be evaluated as

Vt = vt it  (1-2)

The difference among the existing models based on the

Boussinesq assumption is how velocity scale vt and length

scale it are specified. Experimental evidence indicates

that the Boussinesq assumption is reasonably valid in many

flow circumtances with exception of some flow situations.

Models based on the Boussinesq assumption are frequently

called eddy viscosity model.

do



22

Turbulence models are often classified according to

the number of supplementary partial differential equations

that must be solved in order to supply the modelling

parameters. Since details of these models are available

in the various literatures, for example Chen [44], only a

brief discussion of current available turbulence models

will be given.

1.5.1 Zero Equation Turbulence Model

In the zero equation model or algebraic model, such

as proposed by Cebeci and Smith [45] or Baldwin and Lomax

[46], the eddy viscosity is prescribed from length scale

and velocity gradient.

Vt ( )2 1 U (1-3)

The length scale lt is usually obtained from the

empirical correlations developed for the boundary layers.

The algebraic models have proven to be accurate and

reliable for relatively simple flows. The disadvantage of

this model is the lack of generality that the length scale

which is needed for specification of eddy v4.scosity is

function of various parameters and it is not easy to

specify an appropriate length scale over the whole flow

field, especially for the separated flow region or the

wake region. However, these models can be employed all



23

the way to the wall where the viscosity effect is

important and the numerical solutions of partial

differential equations are not needed for the

specification of length scale.

1.5.2 One Equation Turbulence Model

This model is based on the suggestion of Prandtl and

Kolomogorov that the turbulent velocity scale is

proportional to the square root of turbulent kinetic

energy k, implying;

Vt = CA k1 / 2 l (1-4)

This model requires the numerical solution of

turbulent kinetic energy equation which can be derived

from the Navier-Stokes equations. The turbulent kinetic

energy equation contains a diffusion term, a generation

term and a dissipation term which must be modelled through

additional assumptions such as;

k3 / 2

£ = CD i3 (I-5)

which requires specification of another length scale

le.

There exist several one equation models [47,48,49]

and the differences among the these models are mainly how

the length scales 1g, le are specified. In general, the
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predictions of the one equation model have been marginally

better than those obtained from zero equation models.

1.5.3 k - e Turbulence Model

The k - e turbulence model [43] is usually called two

equation model. In this model, the eddy viscosity is

related to the turbulent kinetic energy k and its

dissipation rate £ ;

Vt = C 
(-6)

The turbulent dissipation rate £ is assumed to be

related to the length scale through

it = CD k3"2  (1-7)

The turbulent kinetic energy k and its dissipation

rate £ are determined from two modelled equations. Thus

the eddy viscosity and the length scale are obtained from

the numerical solutions of partial differential equations.

Since this model does not require algebraic specification

of length scale, it can be applied to several flow

situations.

The k - £ turbulence model can only be applied to the

fully turbulent region and calculations of the viscosity-

affected near wall region is avoided by the use of wall

functions. The wall function method [43] has been found
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to be quite successful for attached flow, it is not

suitable for some flow situations. The wall functions

relating the velocity and turbulent quantities at the

second grid point to friction velocity heavily lean on the

assumptions of a logarithmic velocity distribution and the

validity of local equilibrium of turbulence. These

assumptions are not valid in the separated flow region.

Furthermore, the extension of wall function method to

unsteady flow and three dimensional flow requires

additional assumptions which are not substantiated by

experiment or theory [50]. An alternative to the use of

wall function method will be to employ the turbulence

model which are valid all the way to the wall.

1.5.4 Low Reynolds Number Turbulence Model

Several low Reynolds number extensions of the k -

turbulence model [51,52,53] which can be applicable to the

viscous affected layer have been proposed. These models

introduce damping functions in order to achieve the

observed reduction of turbulent transport very near the

wall. However, these models have an undesirable feature

of requiring very high numerical resolution near the wall

region because of the steep gradient of the dissipation

rate E. It was found that all these models perform rather

poorly in adverse pressure gradient boundary layers [54]
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and in separated flows [55]. Patel et al. [50] reviewed

the several available low Reynolds number k - e turbulence

models and concluded that none of the these models can be

used confidently even in the boundary layer calculations.

1.5.5 Two-Layer Turbulence Model

In order to reduce the computational effort and to

preserve numerical stability, the well established length

scale distribution near the wall region can be introduced

to the calculation of the vicosity-affected near wall

region instead of using the wall function method while the

outer, fully turbulent region is resolved by use of the k

- £ turbulence model. This model is named as two-layer

model and it is usually used with the combination of the k

- e turbulence model and zero equation or one equation

turbulence model. Some successes in the prediction of

complex turbulent flows by use of this model is reported

[56,57,58,59,60].

In the present study, the k - £ turbulence model with

wall function method will be employed for most of

turbulent flow calculations while the two-layer model is

applied to some flow situations involving the pressure

gradient and body curvature effects to improve the

accuracy of the calculations.
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1.6 Outline of Study

In chapter II, mathematical and numerical

formulations used in the present study are presented. The

governing equations, boundary conditions, methods of

generation of boundary-fitted coordinates and

dicretization schemes are discussed.

In chapter III, numerical aspects are discussed.

These include the coupling between the continuity equation

and momentum equations, numerical algorithm and overall

solution procedures.

Chapters IV to VII are devoted to the numerical

calculations which include development of the wake

function method for the prediction of flat plate wake,

prediction of laminar and turbulent flows past a finite

flat plate, numerical solutions of turbulent flow past

axisymmetric bodies by wall function method and by two

layer model, prediction of turbulent flow past finite

axisymmetric bodies. Some comparisions of the predictions

by finite analytic method with those by finite volume

method are presented. All the calculted results are

compared with available experimental data to demonstrate

the applicability and accuracy of the numerical scheme.
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In chapter VIII, a brief summary of the present study

is given and some suggestions for future work are

discussed.
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CHAPTER II

FORMULATION OF PROBLEM

II.1 Introduction

In this chapter, the mathematical and numerical

formulation of the present study is presented. This

chapter starts with the mathematical formulation of the

problem which includes governing equations, boundary

conditions and solution domains. Then the grid generation

techniques and discretization methods employed in the

present study are presented.

The solution domains are made large enough to capture

the whole important feature of flow field. The numerical

grids are generated through the numerical solutions of

Poisson equations in which the dependent variables are the

physical coordinate of solution domain. The governing

equations are written in the transformed domain using the

partial transformation where the original Cartesian or

cylindrical velocity components are left as dependent

variables for momentum equations. These transformed

governing equations are discretized using both finite

analytic method and finite volume method.
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11.2 Governing Emations

The continuity equation and general form of transport

equations for the incompressible flow in Cartesian or in

cylindrical coordinate system with the k - £ turbulence

model can be written as follow;

a( P r u ) + ( P r v ) = 0 (II-l)

a( p r * )+ L( P r u * )+ p r v

r r + )+ ( r r + S (11-2)

In these equations, 0 represents the general

dependent variables ( u, v, k, £ ), p is the density of

fluid, r is the effective diffusion coefficient, ( u, v

are the velocity components in ( x, y ) directions and S

denotes the source term for the variable 0. For two

dimensional flow, r = 1 and for axisymmetric flow, y = r.

Details of the definition of all the variables are given

in Table 1.



31

11.3 Solution Domains and Boundary Conditions

11.3.1 Solution Domains

All the calculations presented in the present study

can be broadly classified into two cartegories; half body

calculations and full body calculations. The difference

between these two calculations is the location of the

upstream solution boundary as shown in Fig.II-l. In the

half body calculations, calculations start at the middle

of body with inlet conditions specified by the well

documented profiles from the boundary layer theory. In

the full body calculations, calculations start far

upstream of body with inlet conditions specified by

uniform flow conditions. The solution domain in the

normal direction and in the downstream direction is made

large enough to capture the whole viscous-inviscid

interaction and wake development. The location of

upstream inlet solution boundary in the full body

calculations is also made far away from the body t-

capture the whole leading edge interaction The details

of the solution domains used in the present calculations

are given in Tables 2 to 6.
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11.3.2 Boundary Conditions

The boundary conditions for all the problems

considered in the present study can be stated as follows;

Inlet or Upstream Boundary ( x = xi )

The upstream inlet solution boundary is located

either at the middle of the body or at the uniform flow

region far upstream of the body. The u-velocity component

and turbulent quantities k, E are prescribed from the

simple flat-plate correlations for the half body

calculations and from uniform flow conditions for the full

body calculations. For v-velocity component, the

condition of vx = 0 is specified for all the calculations.

Outlet or Downstream Boundary ( x = xd )

The downstream outlet condition is placed in the wake

region far downstream of body. The zero rressure-gradient

condition Px = 0 is specified at the outlet boundary. For

the exit boundary conditionls for transport quantities ( u,

v, k, £ ), ux = vx = kx = Ex - 0 conditions are specified.

Body Surface

The no-slip boundary condition ( u = v = 0 ) is

specified for all'the laminar flow calculations and for
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the turbulent flow calculations when the two layer model

is employed to calculate the flow field all the way to the

wall. For all the other turbulent flow calculations, the

wall function method is employed in order to avoid the use

of large number of grids to resolve the steep gradient in

the near wall region and uncertanties of the turbulence

model in the viscous-affected region.

Upper Boundary ( y = yu )

The upper boundary is placed at a large distance from

the body where the flow is assumed to be uniform. The

uniform boundary condition is ;

u = 1, p = 0, ky = Cy = 0. (11-3)

The v-velocity component in this boundary is obtained

from the law of conservation of mass within the

computational control volume cell during the solution

process.

Wake Centerline ( y = 0

The boundary conditions along the wake centerline are

the symmetry conditions and are specified as

v = 0, uy = ky = Ey = 0. (11-4)
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!:-4- Numerical Grid Generation

The boundary-fitted coordinate generation technique

proposed by Thompson e* al. [8] is employed for the

generation of numerical grid in the present study. The

complex solution domain in physical coordinates ( x, y

is transformed to a simple rectangular domain in non-

orthogonal, body-fitted coordinates ( , 1 ) by the

solutions of the Poisson equations;

- +r y + f (4,TI) (11-5)

DX2  r ay + =

a2 l a a2T 2x + r 2a - f (4,) (11-6)

where f and f2 are the grid control functions which

are chosen priori to obtain the desired distribution of

grid points in the physical ( x, y ) domain. In these

equations, r = 1, ac = 0 for a Cartesian coordnate system

and y = r and ac = 1 for a cylindrical coordinate system.

The origin of coordinate system is located at the leading

edge of body.

The numerical grid is generated by solution of

inverted forms of these equations where the dependent

variables are the physical coordinates of solution domain.

__ 22a2 x ^12 2 x flax f2xa (17
gll2x + g +2g + + = 0 (11-7)
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II 2 y + 12 + f + f 2 (11-8)
g a2 + 2 + r

where

11 2 2 2
gg = r (xl + y1 ) (II-9)

22 2 2 2
1 2 = r x + y ) (II-10)

g g = _ r ( x x '+ Y Y )
I22g = r (x yn _ x y4 )2 (11-12)

The grid generation techniques outlined below are

essentially the same as those reported in Chen and Patel

[4] or Cheng and Chen [5]. However, some modifications

are made for certain problems.

11.4.1 Generation of Numerical Grids for Flat Plate

Non-uniform rectangular numerical grids are generated

for the calculation of laminar and turbulent flow past a

flat plate with a proper grid concentration made near the

wall and near the leading and trailing edges. The

numerical grid in the normal direction is generated

algebraically instead of solving the differential

equation. The first few grids near the plate are

generated uniformly and next the other grids are generated
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non-uniformly with the grid expansion ratio about 1.2 to

1.3. The size of the first grid in the normal direction

from the plate is adjusted according to the physical

situations being considered. The numerical grid in x-

direction is generated by the numerical solution of the

following differential equation which is obtained from

Eq. (II-7).

11 cl2x fl xg -2 + f i . 0  (11-13)

The grid control function fI is selected by following

equations which is previously used by Chen and Patel [4]

or Cheng and Chen [5];

f /2g = A1  0.0 Z = 0.5

A1 sin( X Z1 ) 0.5 Z1  2 (11-14)

A2 sin( X Z2 ) 0.0 Z2  1.5

- A2  1.5 Z2

where

Z- Z2  (11-15)
41-1 42-241+1

The terms 41 and 42 correspond to the leading and

trailing edge stations as shown in Fig.II-2 and A1 and A2



37

are positive constants which can be adjusted to yield the

desired grid concentration near the leading and trailing

edges.

The partial view of generated numerical grids used

for laminar and turbulent flow calculations are shown in

Fig.II-3. As shown in the figures, an appropriate grid

concentration was made near the wall region and near the

leading and trailing edge regions and the desired grid

expansion in the wake region is also achieved.

11.4.2 Generation of Numerical Grids for Axisymmetric
Bodies

Body fitted coordinates for axisymmetric bodies are

generated by the numerical solutions of Poisson equations,

Eq.(II-7) and Eq.(II-8). In the present study, the

constant-x lines are chosen as constant-4 lines to

facilitate the comparision of numerical results with

experimental data. Then, Eq.(II-7) and Eq.(II-8) can be

rewritten as following simplified form.

11D2x fa
g -- + fx = 0 (11-16)

g11a2r 22a)2r ^12a2r flr F2jr 0 (I-7
9 O-r + g2 + 2 - + f + F 0 (11-17)

where F2 = f-2 (11-18)rr



38

The x-coordinates are algebraically generated instead

of solving Eq.(II-16). The x-coordinate over the body and

in the wake region near the trailing edge of body ( x/L <

1.1 ) is generated uniformly while x-coordinate in the

wake region away from the body ( x/L > 1.1 ) is generated

nonuniformly with grid expansion ratio about 1.2 to 1.3.

The grid control function f is then determined from

following equation using the x-coordinate already

generated.

X
f1 - g (11-19)

With fl specified by Eq.(II-19), Eq.(II-17) can be

solved with a proper specification of grid control

function F2 . The resulting numerical solution gives the

grid distribution in the radial direction.

Along the inlet and outlet boundary where the grid is

orthogonal, Eq.(II-17) can be written as following.

gF 2 r . 0 at 4= 1 and 4 = 4max (II-20)

Thus the grid control function F2 along these

boundaries can be determined from Eq.(II-20) if the r-

coordinate at these boundary is provided.

FA (T) F2,(1,) - g2 2 r = 1 (11-21)

mmm ~~~~~~ mTIm nm m~mnm 
mm
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r = max (II-22)
FB(1) - F 2 (max,11) - - g2 2  I

where 4 - 1 is the upstream inlet station and 4 = 4max

is the downstream outlet station.

The value of F2 inside the solution domain can be

obtained by a linear combination of FA and FB.

F2 (, 11) = FA(T) 1 < 4 < 4A (11-23)

FC(,7) 4< <

FB (1) 4B < 4 < 4max

where

Fc(4,11) = [(x(4B)-x(4))FA(I)+(x(4)-x(4A))FB(1) I

/ (x(4B)-x(4A)] (11-24)

and 4A and 4B are determined from the body shape. In

the case of half body calculation, 4A is placed at the

station where radius of body is initially changed and 4B

is placed at the trailing edge of body as shown in Fig.II-

2. However, the specification of F2 (4, ) is quite problem

dependent and can be adjusted to obtain the desired grid

distribution depending on the shape of geometry.

With the specification of proper grid control

functions f and F 2 , Eq. (II-17) is solved by finite
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difference method. Eq. (II-17) is discretized as following

using the exponential scheme of Spalding [4].

2a g1 1 coth a + 2b g2 2 coth b )4,, r4q

= ( 2a g11 csch a 4, ( ea r4+,, + ea r4_l,)

+ ( 2b g22 csch b e b ,Tl + eb r4, _ 1

2 g12
+ 2 (gl), ( r +in+I + r%_l~n_ - r _l~n+ -r+l_)

(11-25)

where

fl| F2 i
2a = - ''I, and 2b =-F2 ,, (11-26)

g g

The above system of algebraic equation is solved by

the tridiagonal-matrix algorithm.

The body fitted coordinate system for full body

calculation was obtained with a slightly different

specification of grid control function F2 (4,1i). In order

to attract grid lines toward body surface in the leading

edge region of body, the following grid control function

F 2 (t,i1) was devised.

F2 (4,r1) [(d(4B)-d(4))FA(1) + (d(4)-d(A))FB((11)

/ [d(Ws)-d(A)] (11-27)
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where d(t) = r(4,1ref) - r (4,1) (11-28)

In Eq.(II-27), the station 4 = 4A is the station

where d(4) is minimum and the station 4 - 4B is the station

where d(4) is maximum as shown in Fig.II-2. The grid

control functions at these stations, FA(l), FB(1) are

evaluated using Eq.(II-21) and Eq.(II-22) as the same way

as done in half body calculation. The normal reference

station TI = ref which is shown in Fig.II-2 was adjusted

to obtain the desired grid concentration toward body and

Tref TImax - 5 is used for most calculations.

As seen from the Fig.II-4 and Fig.II-5, the boundary-

fitted coordinates generated by above method evolve

smoothly from the body into the wake and the desired grid

expansion in the tail region and in the wake region is

obtained.

11.5 Finite Analytic Method

11.5.1 Partially Parabolic Form of Finite Analytic Method
in the Cartesian Coordinate system

The non-dimensionized form of general transport

equation in the Cartesian coordinate system can be written

as follows;
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where SO is source term for variable 0 and R is

effective Reynolds number for variable 0 defined as

1R = R = (II-30)u v (1/Re + Vt)

Ok (11-31)
Rk - (ak/Re + Vt)

R- (11-32)
RE (aE/Re + Vt)

If we locally linearize the convective velocity in

the governing equation by the value at calculation point P

as shown in Fig.II-6 and neglect the diffusion of

transport quantities in the flow direction, the governing

equation can be approximately written in a following

simplified form:

- = 2B + F (11-33)

where

2B = (ROv)p (11-34)

E )n-
F = (D 0)P ( o - ow + -At O -i ( )

(11-35)

and

D (11-36)
n - Ax
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E = (RO) p (11-37)

S = (SR ¢)P (11-38)

In these equations, the subscript P denotes the

calculation point and the superscript n-i denotes the

previous time step value. The unsteady term and the x-

derivative of 0 are approximated by backward and upwind

finite difference respectively. Eq. (II-30) is solved

analytically with boundary conditions specified by

following equations.

0(h) = O, 0(-k) = OS (11-39)

Evaluation of 0 at calculation point P gives

following algebraic equations.

OP AN ON I As 0s - Cp F (11-40)

where

A exp(2Bh) - 1 (11-41)S exp (2Bh) - exp (-2Bk)

1 - exp(-2Bk) (11-42)
AN = exp(2Bh) - exp(-2Bk)

C hk AN A ) (11-43)Cp 2 - Bk -Bh

If the node P is placed on the wake centerline where

the normal convective velocity component v is equal to

zero, then
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A= k (11-44)
hk

A - h (11-45)AS =h + k(I-5
Shk

Cp hk (11-46)

With the source term linearized as

P C
(S )p = S p + So (11-47)

the following four point partially parabolic

discretization formula can be obtained by manipulating

Eq. (II-40),Eq. (II-35) and Eq. (II-47).

AP -- AN ON + AS OS + Aw OW + b (11-48)

where

Aw  Cp (D )P (11-49)

Ap 1 + Cp ( (D.)p + P - S ) (11-50)
At

b--Cp (( n-i C
P At 4 (

and AN, AS and Cp are given by Eq. (II-41) through

Eq. (II-46).

This partially parabolic form of finite analytic

formulation may be interpreted as a combination of the

upwind scheme in the flow direction and the exponential

scheme in the normal direction.
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11.5.2 Elliptic Form of Finite Analytic Method in the
Boundary-Fitted Coordinate System

The non-dimensionized governing equations based on

the cylindrical coordinate system can be written in the

transformed coordinate system as following using the

partial transformation where the original orthogonal

velocity components are left as dependent variables;

[r(b 1u + b2v)]4 + [r(b2u + b2v)] 0 (11-52)
I ii 22

g 11 0 + g 2A8 + + 0, + E ~t I So (11-53)

where

2A 1 1 1 (11-54)

2B = 2 2 u + b 2 2 (11-55)
2B1- 2 v f2
= j. r b I u+ b v) -f(I-5

E =R (11-56)

S= R, S - 2g 12 *1 (1157)

and

1 1 2 2 =x (1I-58)bI = y1, b2 =-x , b1 -y4, 2

J = r ( x4 y. -x 1 y4 ) (11-59)
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If we locally linearize Eq. (II-53) in each numerical

element, A4 = ATI = 1, by the value at calculation point P

as shown in Fig.II-7 and linearize the source term by

Eq. (II-47), one obtains following equation.

1I 22

gp *4 + gp * = 2(A )p * + 2(B )p O, + G (11-60)

where

_ n-i P C
At OP +

If we introduce the grid stretching functions such

that

* -T_ (11-62)
ii 22

then Eq. (II-60) can be written in a standard finite

analytic form.

04*** + = 2A + 2B , + G (11-63)

where

A - B B- (11-64)

and the grid size is stretched to
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A4* = h A 1 k (11-65)

Equation (11-63) is solved analytically using the

method of separation of variable with boundary condition

expressed as the combinations of constant, linear and

exponential functions involving the nodal values.

Evaluation of the analytic solution at the center node

then provides a nine point algebraic discretization

formula [3].

8

Ap = I Anb Onb + b (11-66)

n=1

where

= exp(-Ah) * PB (11-67)AE=2cosh (Ah)B

exp(Ah) * P (11-68)
AW = 2cosh(Ah) B

A exp(-Bk) * P (11-69)N 2cosh (Bk) A

A = exp(Bk) * P (11-70)
S 2cosh(Bk) A

A exp(Ah+Bk) *(-PA-P (11-71)
SW 4cosh(Ah)cosh(Bk) A (

A exp(-Ah+Bk) *(-PA-P (11-72)
SE 4cosh(Ah)cosh(Bk) A B

= exp(Ah-Bk) * (1-PA-P (11-73)
4cosh(Ah)cosh(Bk) A B

exp(-Ah-Bk) *(-PA-P (11-74)
ANE 4cosh (Ah) cosh (Bk) A B

Ap 1 + C ( ()P - S ) (11-75)
At



48

b =C ( n-I C
b At + +S) (11-76)

Cp = h tanh(Ah) , (1-P _ k tanh(Bk) (1-P )(11-77)P2A A 2B B

and

PA = 4Ah cosh(Ah) cosh(Bk) coth(Ah) E2  (11-78)

PB = 1 + Bh coth(Bk) * (P -1) (11-79)PB Ak coth (Ah) (A-I I-9

with

E2 -_~ 2 h 2  h( + +m

m,[(Ah) 2 + (Xmh)212 cosh (A2 + B2  )k 2

(11-80)

h  m (11-81)

For large cell Reynolds numbers, the series summation

in E2 can be avoided by the following asymptotic

expressions of PA and PB based on the theory of

characteristics. (4]

Ak coth Ah > Bh coth Bk;

PA = 0, PB = 1 - ( Bh coth Bk )/( Ak coth Ah ).

Ak coth Ah < Bh coth Bk;

PB = 0, PA = 1 - ( Ak coth Ah )/( Bh coth Bk ) (11-82)
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11.5.3 Partially Parabolic Form of Finite Analytic Method
in the Boundary-Fitted Coordinate System

The problems considered in the present study are

mostly free from separation and have a predominant flow

direction. In these problems, diffusion in the flow

direction is much smaller than diffusion in the normal

direction. Thus the diffusion term in the flow direction

can be neglected without loss of accuracy. This partially

parabolic form has advantages over the fully elliptic form

in the fact that the computing time for the calculation of

finite analytic coefficients can be reduced. In the

situations when the grid ratio and cell peclet number

become too large, the nine point finite analytic

coefficients requires more computational efforts to be

evaluated accurately. The partially parabolic form of

finite analytic method can be used without any

difficulties. The partially parabolic formulation can

also be used for the simulation of small separated flow

with FLARE approximation [61].

Eq.(II-60) can be approximated using the partially

parabolic assumption ( 4 - 0 ) and the upwind difference

for the convection term in the 4-direction as the

following form;
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22 =2B
gp 2(BO)p 01 + (D)p (p - OW ) + G (11-83)

where

(m0)p = 2(AO)p (11-84)

Introduction of the grid stretching functions Vj*

11/' gp leads Eq. (II-83) to the standard finite analytic

form.

. = 2B OT,* + F (11-85)

where

B - (11-86)

F = (D )P ( O - OW ) + G (11-87)

and the grid size is stretched to

ArI* -k- (11-88)

Equation (11-85) can be solved analytically using the

north and south nodal values as boundary conditions.

Evaluation of the analytic solution at the center node

then provides a four point algebraic discretization

formula.

Ap Op = AN ON + AS OS + AW OW + b (11-89)

where
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exp (-Bk) (II-90)
AN 2cosh (Bk)

exp (Bk) (11-91)
AS 2cosh(Bk)

A w =Cp (D )p (11-92)

= 1 + Cp ( (D )p + A _ S) (11-93),&t
(E )p n-i C

b =C At + S ) (11-94)

= k tanh (Bk) (11-95)Cp = 2B

TT.6 Finite Volume Method

The strong conservative form of governing equations

in the transformed domain can be written as follows;

(p r U )+ (p r V ) =0 (11-96)Tiq

p r 4') + ( p r V 4' )= [ ( (~ * D

J (D1 O +D % S, j (1s1€-97)

where

U = ( b1 u + b1 v ) (11-98)

2 2

V = ( b2 u + b2 v ) (11-99)
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and

1 2 2 2
D1 . r (x 1 + y11 ) (II-100)

2 2 2 2
D 2 = r (x + Y) (II-101)

1 2 2
D2 = D 1 = r (x xn + yyn ) (11-102)

In the finite volume method [2], the governing

differential equations are integrated over a finite number

of control volumes with size, A4 = AI1 - 1, as shown in

Fig.II-8. Using the Gauss theorem, the volume integral of

terms under differential operator can be converted into

surface integrals over the four faces of a two dimensional

control volume. The resulting balance equations for each

control volume and variable * can be expressed as follows.

e- w + -I I fA J S d4 dj (11-103)Ie Iw n s AV

where

Ie rU D + 1 (11-104)Ie = e - 1 Ot +2 1 )e

In =(prV n ( D1 2 + D * ) 2n (11-105)

The volume integral of the source term may be

evaluated as follows;

J J S dt dl = S P SC) AV (11-106)
fAv 00O
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By putting the non-orthogonal terms into source term,

the Eq. (II-103) can be written as as follows.

pr - J D1 * ]e - [ p r U - j D1 04 w

r 2
- n [ r - S2

P C b
= sOP + s v + S ((11-107)

b
where S is the source term arised from the non-

orthogonality of numerical grid and defined as;

S0 1 2  e- D1 ) (2 D1) +j)

(11-108)

The Eq. (II-107) is the standard finite volume

formulation and discretization of this equation is well

explained in Patankar [2]. Using the hybrid numerical

scheme, the discretization equation can be obtained as

follows.

Ap p = AE OE + A W + AN N + AS OS + b, (11-109)

where

AE = MAX [ 0.5*1 F e I , De ] - 0.5*F e  (II-110)

AW = MAX [ 0.5* F w I , Dw ] + 0.5*F w  (II-111)

AN = MAX [ 0.5* F n I , Dn I - 0.5*F n (11-112)
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A = MAX [ 0.5*1 Fs I , Ds ] + 0.5*Fs  (11-113)

P
Ap AE + AW + AN + AS - S AV (11-114)

C b
b S AV + S (11-115)

and

F = (p r U )e (11-116)

Fw = p r U )w (11-117)

F = (p r V )n (11-118)

Fs = (pr V )s (11-119)

with

D = ( J DI )e (11-120)

Dw-(J D1) (11-121)1 w

D JD2) (11-122)

Ds D 2  (11-123)

In these equations, the notation MAX [ A , B ] means

the greater of A and B and I A I means the absolute value

of A.

The problems considered in the present study are

mostly free of separation. Thus the numerical false
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diffusion problem has a negligible effect on the accuracy

of solution. In these situations, the choice of numerical

scheme is not important. However, the use of different

numerical method requires different usage of wall function

method in the turbulent flow calculation. The finite

analytic method usually uses the two-point wall function

method while the wall function method of Launder and

Spalding [43] is employed for most of finite volume

calculations. The primary numerical scheme foz the

present study is the finite analytic method. However, the

finite volume method is employed when the use of the two-

point wall function method is restricted by a certain

problem or when the comparisions of predictions by two

different methods are thought to be important. It is

noted that the finite analytic method usually employs non-

dimensionized form of governing equations while finite

volume method employes dimensional form. All the

derivations follow this common practice. The use of each

numerical scheme for a certain problem is explained when a

specific problem is mentioned.
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CHAPTER III

SOLUTION PROCEDURE

III.1 Introduction

A difficulty encountered in solving the Navier-Stokes

equations for incompressible flow concern the handling of

pressure terms. The difficulty arises from the fact that

pressure does not have its own equation in the sets of

Navier-Stokes equations. The pressure term only appears

in the momentum equations which must be considered as the

governing equations for velocity components. Thus the

continuity equation should be used to solve the pressure

variable. However, there is no pressure term in the

continuity equation. This difficulty is usually

circumvented by deriving the pressure equation by

manipulating the continuity equation and momentum

equations. It is noted that the algebraic relations

obtained in the previous chapter can be used only for the

velocity components and turbulent quantities. The way of

resolving pressure varible and satisfying mass

conservation should be sought. In the present study, the

SIMPLER ( Semi-Implicit Method for Pressure Linked

Equation - Revised ) numerical algorithm of Patankar [2)
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is imployed for this purpose. In this algorithm, a

Poisson like equation which is derived from the

manipulation of continuity equation and momentum equations

is solved to obtain the pressure field and in addition,

the pressure correction equation is again solved to

correct velocity components to satisfy continuity

equation. Following sections are devoted to the

derivation of pressure and pressure correction equation in

the Cartesian coordinate system and in the body-fitted

coordinate system.

ITr.2. Pressure and Pressure Correction EQuation in
Cartesian Coordinate System

From the discretization equations for momentum

equations such as Eq.(II-40) or Eq.(II-66), the velocity

field ( u , v ) can be decomposed into pseudovelocity

components ( u , v ) and the pressure gradient terms

contained in the source term as;

A

V n - d n PN - p (111-2)
Vn Vn n~~~

where

Ue- A e Anb Unb + bu )e (111-3)Ae nb

A 1
v = A ) (111-4)n A n nbvnb v n

nb
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and

de [C e (RU) / [A e (sx) e (111-5)

dn = [ Cn (Rv)n ] / [ An n ] (111-6)

In these equations, subscripts e and n denote the

value evaluated at staggered velocity nodes e and n as

shown in Fig.III-l. For example Ae, Ce are algebraic

coefficients A, C p evaluated at node e and (8 X)e, (By) n

are the distances between pressure calculation points.

The variables Ru, R are the effective Reynolds number for

variable u and v. All the coefficients are based on the

finite analytic method in non-dimensional form given in

Eq. (II-41) through Eq. (II-43).

The continuity equation within the control volume

cell can be wriiten as following;

(AY)eUe - (A)wuw + (Ax)nvn - (Ax)sVs = 0 (111-7)

where Ax, Ay are the sizes of control volume cell as

shown in Fig.III-1.

The pressure equation can be derived by substituting

momentum equation, Eq. (III-i) and Eq. (III-2) into

continuity equation, Eq. (II-7).

A PP = AE PE + AW PW + AN PN + AS PS - D (111-8)
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where

AE = (Ay)e de (111-9)

AW = (Ay)w dw  (III-10)

AN = (Ax)n dn (III-11)

AS = (Ax) s ds (111-12)

AP= A + Aw + AN + AS (111-13)

and

A

= (Ay) u + (Ax) v - (Ax) v (111-14)(AY ee (Yw w n n s s

The velocity components ( u , v ) obtained from the

solution of the momentum equations will generally not

satisfy the continuity equation unless the pressure field

is correct. We denote these imperfect velocity components

as starred velocity components ( u* , v* ). These starred

velociy components must be corrected to satisfy continuity

equation.

ue = Ue d( PE - PP) (111-15)

Vn = Vn - dn PN - PP) (111-16)

where P is the pressure correction.
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The pressure correction equation is obtained by

substituting these velocity correction equations into

continuity equation, Eq. (III-7).

AP PP AE PE + Aw PW + A N PN + A S P - D (111-17)

where

D =(Y) e Ue - (Ay)wuw + (AX)nVn - (Ax) svs  (111-18)

and the coefficients AE, AW, AN, AS and Ap are same

as those given in pressure equation and the mass source D

is based on starred velocity components which are obtained

from the solution of momentum equations.

After the pressure correction equation is solved, the

velocity components are corrected through velocity

correction equations to satisfy continuity equation.

ITI.3 Pressure and Pressure Correction Ecruation in
Boundary-Fitted Coordinate System

111.3.1 One Velocity Staggered Grid Method

In one velocity staggered grid method, only one

velocity component is stored in each staggered node e and

n as shown in Fig.III-2. Thus derivation of pressure and

pressure correction equation in this grid arrangement is

not much depart from those in Cartesian coordinate system.
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The discretized monentum equations for ue and vn can

be written as follows;

u = (H ) e u (Du)e(Pen-Pe) (111-19)

e u e- 1 ePE_(D2)e(en- es

v= (Hv) - (Dv)(P-P) - (Dv)n(PN-Pp) (111-20)

where

(H ) ( 'Au + b )(111-21)u e A nb nb u ee nb

(H) AnbVnb +b ) (111-22)
n nb

and

(Du) =(C (R 1 ) ]/[A J ]  (111-23)1Ie e u 1 e e e

(D)e = [ C ( R r b I ) ] / [A J ] (111-24)2e e u 1ee e

(D) = [C ( R r b1 ) ] / J (111-25)i n n v 2 n n n

(Dv) = [ C ( R r b 2n ] / [ A J ] (111-26)

In these equations, the algebraic coefficients are

based on the finite analytic method with non-dimensional

form given in chapter 11-4.

The velocity components ( u , v ) are then decomposed
A A

into pseudovelocity components ( u , v ) and the pressure

gradient terms.
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A

Ue = Ue - (D)e ( PE - PP )  (111-27)

v n =-v n - (D2)n ( PN- PP )  (111-28)

where

A

u e = (Hu)e - (D)e ( Pen -Pes (111-29)

A

v n = (Hv) n - (D)n ( Pen Pwn (111-30)

The cross derivative terms of pressure are contained

in the pseudovelocity components to avoid a complicate

nine point pressure equation and are explicitly evaluated

using the pressure obtained from the previous iteration.

The continuity equation within the control volume

cell in non-orthogonal coordinate system can be written as

follows.

[rb1 u+b1 1 1[r(b1 u + b~v)]e - [r(blu + b 2 v)]w

[r(bn (bu + b 2 v) -- 0 (111-31)

The Eq. (III-31) can be rearranged as following form.

1rlu 1 r~~ 2 n  2 s
(rb1U - (rb1U) + (rb v) - (rb 2v) - DN (111-32)

where

1 1 +r2u -r2u) (I-3
DN = (rb2v) e - (rb 2 v) + (rb n - (rb2U) (111-33)
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The pressure equation can be derived by substituting

Eq. (III-27) and Eq. (III-28) to continuity equation,

Eq. (III-32).

A

AP PP AE PE + AW PW+ AN PN I AS PS- D (111-34)

AE = ( r b )e (D)e (111-35)

1 1 

AW = ( r bI ) (Du) (111-36)

r b 2 ) (Dv) (111-37)AN 2 )n 2n

AS = ( r b2 ) (D) (111-38)

AP = AE+ AW + AN + AS (111-39)

where

A JA lA 2A 2A
D = (rbiu) e - (rbiu) + (rb2 v)n (rb2 v)s + DN

(111-40)

A

and the mass source D is based on the pseudovelocity

components. The mass source term DN expressed in Eq. (III-

33) should be evaluated from the continuity-satisfying

velocity components from the previous iteration level. It

is noted that the velocity components that are needed for

evaluation of DN are not stored at the staggered nodes and

are obtained by averaging neighbouring nodal values.
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The imperfect velocity components ( u*, v* ) which

are obtained from the solution of momentum equations are

corrected by the pressure correction in order to satisfy

the continuity equation.

ue = Ue (D1 )e ( PE - PP )  (111-41)

• = v (D (1 -2

n n - 2)n N - PP )

where P is the pressure correction. The pressure

correction terms arised from the cross derivatives are

neglected to ensure the diagonal dominant pressure

correction equation which is an important parameter to

achieve the stability of solution procedure. The

neglection of these terms do not effect the accuracy of

final converged solution since the pressure correction

should be zero at the final converged stage. However,

this practice may slow down the convergence when the

numerical grid is strongly non-orthogonal.

The pressure correction equation is obtained by

substituting velocity correction equations into continuity

equation, Eq. (III-32).

I I I I *

Ap PP = AE PE + AW P W + AN PN + AS PN - D (111-43)

where
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D (rblu ,e - (rblu )w + (rb n (rb2 v)s+DN

(111-44)

where the coefficients AE, AW, AN, AS and Ap are the

same as those given in pressure equation and D* is based

on the starred velocities ( u*, v* ) which only satisfy

the monentum equation.

With the updated pressure correction, the velocities

are improved through the velocity correction equations to

satisfy continuity equation.

It is noted that pressure and velocity coupling

technique used in the present study is slightly different

from that used by Shyy et al. [24) although same one

velocity staggered grid method is employed.

111.3.2 Two Velocities Staggered Grid Method

In two velocities staggered method, both velocity

components are stored at each staggered node e and n as

shown in Fig.III-3. The discretized form of momentum

equations for these velocity components can be written as

follows with the pressure gradient term expressed

explicitly.

u e = (Hu)e - (Du) ((D ) e (Pen-pe) (111-45)
e u e en es
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v = (Hv)e - (Dv) (p - (Dv) (PenPes (111-46)

and

u = (Hu)n - (Du) (Pe - (Du) n (p(-Pp)111-47)

n = (Hv) n - 1 n enwn- (D)n N-Pp ( -48)

where

Hu = ( XAnbUnb + bu ) (111-49)
nb

Hv = ( X Anb Vnb + b ) (111-50)
nb

and

DU=(rb1 Ap(111-51)
1 1

D ( r b I ) / Ap(1II-51)u 2D2 = ( r b, Ap (111-52)

D1v = ( r b 1 Ap (111-53)

v 2

2 = ( r b2 ) /A (111-54)

In these equations, the algebraic coefficients are

based on finite volume method.

The velocity field ( u , v ) can be decomposed into
A A

pseudovelocity components ( u , v ) and the pressure

gradient terms as follows.

A U
Ue = Ue - (Du)e ( P E - P P (111-55)
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A v Dv (111-56)ve = e - (De ( E -PP ) II-6

and

un =Un - (Du)n ( P- PP ) (111-57)

Av n  v n  (Dv)n ( PN PP (III-58)

where

Ue = (Hu)e - (D2)e ( Pen - Pes ) (111-59)

ve = (Hv)e - (D)e ( Pen- Pwn (111-60)

and

A u

Un = (Hu)n - (Dl)n (Pen- Pwn ) (111-61)

A V
v n = (Hv)n - (D)n (Pen- Pwn ) (111-62)

The cross derivative terms of pressure are again

contained in pseudovelocity components to obtain diagonal

dominant five point pressure equations.

The continuity equation for the control volume cell

shown in Fig.III-3 can be written as follows;

Ue - Uw + Vn - Vs = 0 (111-63)

where U and V are the contravariant velocity

components defined as;
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U = r b I u + b 2 v (111-64)

V = r ( b2 u + b v ) (111-65)

The pressure equation is then obtained by sustituting

Eq. (III-55) through Eq. (III-58) into continuity equation,

Eq. (111-63)

A

AP pp = AE PE + AW PW + AN PN + AS PS - D (111-66)

whe re

1 u 1lv
AE = r( b D+bID 1 ) (111-67)

1 u 1 v

AW = r ( b I D1 + b D1 ) (111-68)

2 u 2 v

AN=rn ( b2 D2 + b2 D2  n (111-69)

2 u 2 v (III-70)
S =r s  b 2  2 s

Ap =AE + AW + AN + AS (111-71)

A A A A A

D= U - U + V - v (111-72)e w n s
A A

and U and V are based on the pseudovelocity

components and defined as;

A lA 1A

U = r ( bI u + b2 v ) (111-73)

A 2A 2A
V=r (b I u + b2 v ) (111-74)
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Since the velocity components obtained from the

solution of momentum equations with imperfect pressure

field generally do not satisfy continuity equation. These

starred velocity components ( u*, v* ) are corrected

through the pressure correction in order to satisfy mass

conservation during the iteration process.

* 1 ' ' I u '

ue = ue - e E-PP) - )e (Pen-Pes) (1II-75)

* ' ( I v I I

v e = ye - (De -PP) - (D2)e (Pen-Pes) (111-76)

and

* u u ( 1 1 7
un =un - (DI)n (Pen-Pwn) - (D)n (PN-PP) (1II-77)

* v I I 1 '1
vn = vn - (D)n (Pen-Pwn) - (D)n (PN-PP) 1II-78)

where P is the pressure correction

In order to facilitate the velocity correction

procedure, following contravariant velocity correction

equations are derived using Eq. (III-75)-Eq. (III-78) and

Eq. (III-64)-Eq. (III-65).

* I

Ue = Ue - (Du)e ( PE - PP ) (111-79)

* I

Vn = Vn - (Dv)n ( PN - PP )  (111-80)

where
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* = 1 * 1 *
Ue = re ( b I u + b 2 v )e (111-81)

* 2 * 2*
Vn = r n ( b, u + b 2 v )n (111-82)

and

D 1 u 1 v (111-83)
(DU)e re b D1 + b 2 D1 )e

Vn r 2 D 2 v (111-84)

(D) b D + b 2 D2 )n

The pressure correction terms arised from the non-

orthogonality of numerical grids are neglected to avoid

the complicated nine point pressure correction equation

and to ensure diagonal dominant pressure correction

equation.

The pressure correction equation is obtained by

substituting these contravariant velocity correction

equations into continuity equation, Eq. (II-63).

I I I I I *%

APP P PE + A PW + AN PN + AS PN - D (111-85)

where

* * * * *

D =Ue - w + Vn - Vs  (111-86)

where the coefficients AE' AW' AN AS and AP are the

same as those in pressure equation and D* is based on the

starred velocities which are obtained from the solutions

of the momentum equations.
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From the updated pressure correction, the

contravariant velocity components are corrected to satisfy

mass conservation. The other contravariant velocity

components, Un and Ve which lie parallel to the control

volume surfaces are obtained from linear interpolation of

newly computed neighbouring nodal values.

Then the corrected velocities are obtained from these

continuity-satisfying, corrected contravariant velocity

components.

2 1

u= (b 2 U -b 2 V) /J (111-87)

2 1
v = - ( b I U - b I V ) / J (III-88)

where

1 2 1 2
J = r ( b1 b2 - b2 b1  ) (111-89)

It is noted that the conitinuity-satisfying,

corrected contravariant velocity components are stored and

used for the evaluation of algebraic coefficients AE, AW,

AN, AS and Ap for transport quantities.

Maliska and Raithby [30] used the same procedure as

outlined above in the calculation of three dimensional

parabolic flow of arbitrary cross sectioned ducts.

However, they used exact nine-point pressure and pressure
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correction equations which may deteriorate the stabillity

of solution process when the numerical grids are strongly

non-orthogonal.

111.4 Overall Solution Procedure

The solution procedure of SIMPLER algorithm is

adopted for all the calculations in the present study.

The momentum equations and turbulent transport equations

are first solved by parabolic marching technique in the

flow direction using the pressure obtained from the

previous iteration. After the marching of calculations

for turbulent quantities is completed, the pressure field

is solved elliptically with several global iterations.

The advantage of this global, elliptic pressure

calculation technique is a monotonic and rapid convergence

of pressure due to a proper consideration of the elliptic

nature of the pressure field, especially near the leading

and trailing edges.

The detailed overall solution procedure can be

outlined as following.

1) Generate the numerical grids using the methods

outlined in chapter 11-3 and save the geometric data, such

as b, J, fi gii etc.
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2) Specify the inlet boundary conditions for

transport quantities, the velocity components and

turbulent quantities.

3) Set pressure and pressure correction equal to zero

everywhere in the solution domain.

4) Calculate the algebraic coefficients and source

terms for momentum equations, such as those given in

Eq.(II-67) through Eq.(II-81), at downstream station using

the transport quantities obtained from the previous

iteration level. This step includes the calculation of

coefficients of pressure and pressure correction equation

such as those given in Eq.(III-35) through Eq. (III-39).

5) Solve the momentum equations, such as Eq.(III-19)

and Eq. (III-20), using the pressure from the previous

iteration level to obtain starred velocity field, ( u*, v*

6) Using this starred velocity components, calculate

the mass source for the pressure correction equation, D

7) Solve the pressure correction equation, such as

Eq.(III-43) and update the velocity field using Eq.(III-

41) and Eq.(III-42) to satisfy continuity equation.

IL ' R , wl l l l lnm l m m l
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A A

8) Calculate the pseudovelocity field, ( U , v ) from

Eq.(III-29) and Eq.(III-30) using the corrected velocity

components.

9) Calculate the mass source for pressure equation,
A

D, and store for later use.

10) Calculate the algebraic coefficients and source

terms for the turbulent transport equations using the

updated velocity field and turbulent quantities from the

previous iteration level.

11) Solve the turbulent transport equations.

12) March to the next downstream station and repeat

the procedure 4) to 11).

13) After the marching is completed at the last

downstream station, the pressure equation such as Eq.(III-

34) is solved elliptically with several global iterations

( typically 20 sweeps ) from downstream to upstream to

update new pressure field.

14) Return to step 4) for the next iteration level.

15) Steps 4) through 14) are repeated until

convergence or steady state solution is reached.
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All the algebraic equations are solved by line by

line technique using tridiagonal matrix algorithm. It is

noted that although parabolic marching technique is

employed for the calculation of transport quantities, all

the transport quantities are stored in two dimensional

array. Thus the present solution procedure has potential

for the calculation of separated flow.
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CHAPTER IV

CALCULATION OF TURBULENT WAKE PAST A FLAT PLATE BY WAKE

FUNCTION METHOD

IV.1 Introduction

The turbulent flow past a finite flat plate has been

studied by many researchers because it provides a

fundamental understanding of wake development and the

basic feature of viscous-inviscid interaction at the

trailing edge of the body. According to Alber [62), the

wake region can be divided into three fundamental regions;

laminar wake region where the laminar sublayer on the

plate is destroyed, turbulent inner near wake region where

the logarithmic remnant of the trailing edge boundary

layer is destroyed, the far wake region where the flow

field loses the memory of the turbulent boundary layer on

the flat plate and attains the self preserving form. The

experimental data of Chevray and Kovasznay [63], Ramaprian

et al. (64], Pot [65), Andreopoulous and Bradshaw [66]

confirm such a wake behaviour behind a flat plate. Some

comparisions and reviews of these data can be seen in

Ramaprian et al. (64].
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The earlier calculations by Rodi [67], Launder et

al.(681 had placed more emphasis on the test of turbulence

model. More extensive calculations were carried out by

Patel and Scheuerer [69] for symmetric and asymmetric

turbulent wake of a flat plate. The results were compared

with several available experimental data. In these works,

the authors used the boundary layer calculation method

with zero pressure gradient and calculations were started

at the trailing edge of the flat plate with initial

conditions provided by experimental data. Thus, the

boundary layer on the flat plate and viscous-inviscid

interaction at the trailing edge of flat plate were not

considered. A detailed large domain solution surrounding

the trailing edge of the flat plate was obtained recently

by Patel and Chen [70). The two-layer model was adopted

for the boundary layer calculation on the flat plate and

the k - E turbulence model was adopted for the wake

calculation. The boundary layer on the flat plate was

accurately calculated to the lar11n-.r sublayer ( y+ - 0.4 )

by the two-layer model in which the turbulent kinetic

energy and turbulent kinetic energy dissipation rate in

the laminar sublayer and the buffer layer and a part of

logarithmic layer are specified by universal functions

based on the experimental data curve-fitting and eddy

viscosity in these regions is calculated by the Van Driest
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formula. Comparisons of calculated results with

experimental data and results from the previous

calculations were made. However, a detailed destruction

of laminar sublayer and buffer layer in the wake was not

calculated since the k - £ turbulence model was adopted in

the wake calculation. For example, the destruction of

turbulent kinetic energy peak at y+ - 15 on the trailing

edge of turbulent boundary layer and the development of

wake centerline velocity in the laminar wake region were

not calculated. While the two layer model predicted a

reasonably accurate result, it requires many computational

nodes in the near wall region over the plate. It is quite

questionable that the present low Reynolds number

turbulence model can be used confidently for the

prediction of rapid mixing in the laminar wake region

although it has been successful in the various

calculations of boundary layer type flow.

The purpose of the present study is to develop a

calculation method in which the concept of a wall function

method is adopted and extended to the wake calculation.

In this approach, the laminar wake region is excluded from

the calculation domain and wake functions are introduced

to accurately account for the large streamwise velocity

gradient along the wake centerline in the same spirit that

wall functions are used in the near wall calculation. It
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is shown that the application of the combination of wall

and wake function may satisfactorily predict the turbulent

boundary layer on the plate, the trailing edge interaction

and the development of turbulent wake.

IV.2 Numerical Grids and Solution Domains

The solution domain shown in Fig.IV-1 consists of

wall function region, wake function region, and

calculation region. The wall function region is one

computational control volume over the plate which extends

from y+ = 0 to y+ - 150. The wake function region is one

computational control volume just downstream of the

trailing edge of flat plate extending approximately from

x+ = 0 to x+ - 500 in the wake region.

Non-uniform 57x31 grids are generated numerically by

the grid generation technique outlined in chapter 11-4-1

with exponential distribution along the y-direction and

sinusoidal distribution along the x-direction so that an

appropriate grid concentration can be made close to the

wall and near the trailing edge of flat plate as shown in

Fig.II-3. The details of informations on grid and sizes

of solution domains are given in Table 2. The numerically

generated coordinate lines are treated as control volume

lines and grid lines are placed at the center of control
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volume lines as suggested by Patankar [2]. Of the 31 grid

points in the y-direction, 10 grid points are placed

within the boundary layer on the body. The origin of

coordinate system is placed at the trailing edge of plate.

TV.3 Boundary Conditions

The upstream inlet condition for u-velocity is

specified by the following simple flat-plate correlations

(71].

u ( ) 1/7 (IV-i)

-1/5
S(x) = 0.37 x ( Re x ) (IV-2)

where (x) denotes the boundary layer thickness at

distance x from the leading edge and Re is the Reynolds

number based on the free stream velocity and plate length.

The upstream inlet condition for turbulent kinetic

energy and the rate of turbulent kinetic energy

dissipation are specified by following simple relations.

-1/2 2 - )(V3
k =c u (IV-3)

3/4 k3/2£ c i IV4
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where u,- (rwlp)11 2 is the friction velocity, c =

0.09 and the length scale lm is calculated by Escudier

formula [72].

y/8 < c /K , I m - K y (IV-5)

y/8 > c1,/lC , lm = C 8 (IV-6)

In the wall function region, u, k, and e are

calculated by the following conventional relations [43].

u 1 +- in y + B (IV-7)
uT K

-1/2 2
k =c1 u2 (IV-8)

3
= uz / xy (IV-9)

+

where y = Re u. y, K is von-Karman constant, K = 0.42

and B - 5.5.

The two point wall function method used in the

present study is a slightly different from the wall

function method generally used in the control volume

method. It is assumed that at least two u calculation

nodes are placed in the logarithmic region. The friction

velocity u T is first determined by iterative method using

the u value in the third node ( y+ - 150 ) and Eq. (IV-7).

Then the u, k, £ values in the second node ( y+ - 60 ) are
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evaluated using this friction velocity and Eqs.(IV-7)-(IV-

9).

In the wake function region, the wake centerline

velocity Uc, and other variables, vw, kw, and Cw are

specified at the locations as shown in the Fig.IV-2.

Detailed specification and explanation of these wake

functions will be given later.

The other boundary conditions are sama as those

reported in chapter 11-3-2.

TV4. Wake Function Method

IV.4.1. Significance of Wake Function Method.

One of the difficulties that arises in the prediction

of wake flow is that when the turbulent boundary layer

leaves the trailing edge of flat plate, the turbulent

structure of flow changes rapidly because the no slip

condition on the plate abruptly changes to the symmetry

condition in the wake. There is a rapid mixing near the

wake centerline and the turbulent boundary layer on the

plate breaks down and developes into the wake. The flow

development in the wake can be divided into three

fundamental regions as mentioned before. The practical

difficulty encountered in the calculation of turbulent
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wake is that none of the present turbulence models can be

used confidently for the calculation of the laminar wake

and far wake. On the other hand, it is not easy to

capture numerically the rapid variation of turbulent

structure near the wake centerline unless large number of

nodes are placed near the trailing edge. The same

difficulties are also encountered in the calculation of

flow near the wall. The wall function is introduced to

circumvent these two difficulties. In the present study,

we introduce wake functions which may account for the

development of velocity along the wake centerline while

laminar wake region is excluded from the calculation

domain. The detailed calculation in the laminar wake

region and the uncertainty of the turbulence model in the

laminar wake calculation can be removed by this approach.

If there is no separation near the trailing edge of the

body like present problem, the downstream near wake

calculation is strongly depends on the flow condition

immediately downstream of the trailing edge. Thus a

proper imposition of the wake function may reduce the

error initiated by the wake inlet condition.

One of the difficulties in the calculation of a

symmetric wake when the wall function method is used in

the calculation of boundary layer of body is the

imposition of symmetry condition for the u-velocity along



84

the wake centerline in the turbulent inner near wake

region. In the initial phase of this study, an

interpolation function which satisfies the symmetry

condition along the wake centerline was used for the

evaluation of quantities of the first control volume in

the wake and along wake centerline while calculations were

carried out from the second control volume. The square

interpolation function, Ay2 + B, was used for the

evaluation of u, k , e and linear interpolation function,

Ay, was used for the evaluation of v. However, these

interpolation functions do not accurately account for the

physical behaviour of the flow. The errors generated by

these interpolation functions thus affect the solution in

the normal direction by diffusion and in the downstream

direction by convection. As a result, the downstream

calculation, particularly in the turbulent near wake

region, suffers from these errors.

According to the theory of Alber [62], the mean x-

directional velocity component has the logarithmic

behaviour of the turbulent boundary layer in the turbulent

inner near wake region although it breaks down as the flow

moves downstream. In the present study, the first x-

directional computational grid in the wake region is

placed at the starting point of turbulent inner wake

region ( x+ - 250 ) and the first three y-directional u-
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velocity calculation nodes are placed at the logarithmic

layer ( y+ - 60, 150, 250 ). Thus, the computational

nodes used in the interpolation function for the initial

portion of turbulent inner near wake region are placed in

the logarithmic layer. The discrepancies between the

physical behaviour and interpolation functions result in a

considerable, error, especially in the evaluation of u-

velocity. If the square interpolation function is used in

the evaluation of u-velocity, it gives a higher u-

velocity values for the second node and the wake

centerline. Consequently, this higher u-velocity

influences the generation term of kinetic energy in the

third node. Thus, the turbulent kinetic energy is

underpredicted. These errors can be reduced if many finer

grids are placed near the wake centerline. However, there

is a limit because the wall function used in the boundary

layer calculation can only be applied to the region 60 <

y+ < 400. On the other hand, only the laminar sublayer,

y+ < 10, from the boundary layer flow is destroyed in the

starting portion of turbulent inner wake region. In other

words, the wake symmetry condition satisfies only about a

laminar sublayer thickness above the wake centerline.

Thus, an accurate resolution of the symmetry condition

along the wake centerline by a simple interpolation

function is impossible, and more importantly, the solution
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will be quite grid dependent. It is quite apparent that a

direct imposition of the symmetry condition 0(i,2) = 0(i,1)

over a distance of Ay+ in the order of 60 should cause

severe error.

One possible way of avoiding these errors will be a

direct calculation along the wake centerline with the

inlet condition provided properly. If we consider the

calculation of asymmetric wake, the whole domain should be

calculated. Rhie and Chow [16] performed the whole domain

calculation even in the symmetric wake calculation to

avoid numerical error from interpolation along the line of

symmetry. However, details of the inlet conditions of

transport quantities for the wake calculation immediately

downstream of the plate were not explained in their paper.

Since the k - e turbulence model is used in this

study, the control volume which contains the laminar wake

region should be excluded from the wake calculation.

Since the laminar sublayer and buffer layer and a part of

the logarithmic layer in the boundary layer on the body

are not calculated in the wall function method, the

detailed destruction of these layers in the wake can not

be calculated. Thus a universal function which can

resolve the large streamwise velocity gradient caused by

the destruction of these layers should be used in the wake



87

function region. The idea of creating the wake function

is the same as that the wall function is introduced in the

calculation of boundary layer on the body.

IV.4.2. Proposed Wake Functions.

In order to adopt a wake function, we note that Alber

[62] obtained the mean velocity profile in the turbulent

inner near wake region using the boundary layer

approximation and similarity transformation under the

assumption of a linear distribution of eddy viscosity in

the normal direction. The wake centerline velocity and

velocity components near the wake centerline in the

turbulent inner near wake region are
u

[ ln g(x + ) - y ] + B (IV-10)
u o

u - ln y + El( ) ] + B (IV-11)
u TO K

v = [ 1 - exp(-4) ] / in g(x+ ) (IV-12)

where

x + = Re uTOX, y+ = Re uTo y, = y+/g(x+)

El  = f exp(-t)/t dt

and

g(X) [ ln g(a) - 1 ] = K2 X (IV-13)
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and u is the trailing edge friction velocity and y

= 0.5772157 ) is the Euler constant. The constants K, B

in these equations were taken as K= 0.42, B - 5.5 for the

consistency with the wall function. Eq.(IV-12) was

obtained from Eq.(IV-11) and continuity equation.

One may alternatively use the centerline velocity

formula given in Eq.(IV-10) with the correlation obtained

from experiment by Andreopoulos and Bradshaw [66];

u
- 2.02 ln x+ + 0.7 (IV-14)

U TO

Alber's solution, Eq.(IV-10), is used as the inlet

condition for the downstream wake centerline u-velocity

calculation in this study.

For the proper introduction of wake functions for the

turbulent quantities in the wake function region, we may

consider Chevray and Kovasnay's data [63]. They show that

the turbulent structure in the logarithmic layer from the

trailing edge of the flat plate to the starting point of

turbulent inner near wake region remains the same although

the structure of laminar sublayer and buffer layer evolve

rapidly by means of mixing in the laminar wake region.

Therefore, we may use the second y-directional nodal

values of the k and e at the trailing edge of plate as the

second y-directional nodal values of k and e in the first
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control volume in the wake, as shown in Fig.IV-2, without

loss of accuracy. Obviously, a direct calculation of

these quantities is impossible since the calculation point

for kw and Ew is located immediately downstream of the the

trailing edge where the centerline u-velocity can not be

calculated. We thus adopt

-1/2 2
kw =c' u (IV-15)

3
Ew / Ky (IV-16)

as the second nodal values of the turbulent kinetic

energy and the rate of its dissipation in the first

control volume in the wake. Here, uTO is the trailing edge

friction velocity.

There is no detailed experimental observation made

for the variation of k and £ along the wake centerline

within our knowledge. This lack of inlet conditions for k

and e along the wake centerline lead us to use the

interpolation function ( 0 = Ay 2 + B ) in the subsequent

calculation of k, £ along the wake centerline. However,

this does not create error in the calculation of k, £ in

the second node in the wake because the value of k and £ in

the second node in the wake are more dependent on the

generation term of the turbulent kinetic energy than the

k, £ values along the wake centerline. In other words,
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accurate resolution of the wake centerline velocity is

more important for the accurate prediction of second nodal

turbulent kinetic energy than the specification of k and e

along the wake centerline.

IV.4.3 Enforcing the Conservation of Mass

An important problem in the calculation of wake by

the wall and wake function method is the calculation of

the second nodal v-velocity component in the wake region.

The difficulty arises from the fact that the detailed

destruction ( mixing ) of laminar sublayer and buffer

layer and logarithmic layer in the first y-directional

control volume in the wake can not be properly described

in the wall function method due to the lack of

computational nodes near the wake centerline. Obviously,

this is more severe in the calculation of the intial

portion of turbulent inner near wake. To avoid these

numerical difficulties, we adopt PSL ( Parabolic Sublayer

) like treatment [73]. In this study, the second nodal v-

velocity in the wake which is denoted as v2 in Fig.IV-2 is

calculated by the mass conservation of the first control

volume using the following simple integration formula.

AYc Ayc
AXc v 2  u dy - J u2 dy (IV-17)

0 0

where
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AYc 1 13 1

f u dy ( u(i,1) + 1 u(i,2) + I u(i,3) ) Ayc
0

(IV-18)

The accuracy of the integration formula is very

significant in the wake calculation sinc4 a small error in

mass conservation may lead to a large error in the

prediction of the pressure field in the weak interaction

like present problem. It is not easy to find a good

integration formula which can accurately resolve the mass

flux of laminar sublayer, buffer layer and a part of

logarithmic layer at the trailing edge of body ( x = 0

so that vw in Fig.IV-2 can be calculated by Eq.(IV-17).

Thus the Eq. (IV-12) is used only for the specification of

the v-velocity component in the wake function region ( vw

in Fig.IV-2 ) for simplicity and accuracy. The pressure

in the wake is calculated from the third node in the y-

direction using these v-velocity components as velocity

boundary condition. The u-velocity component in the

second node is calculated using the pressure in the third

node. The starting point of calculation in the y-

direction in the wake region is shown in Fig.IV-2.



92

IV.5. Results and Discussions

Calculations were performed using the partially

parabolic form of finite analytic method which is derived

in chapter 11-5-1 and SIMPLER numerical algorithm outlined

in chapter 111-4. The derivation of pressure and pressure

correction equation is given in chapter 111-2. The time

marching technique is employed for the iteration process

and satisfactory convergence were obtained after 100 time

marching with time step At = 1.

The calculation is made for Reynolds number 2.48 x

106 based on the plate length and free stream velocity.

The predicted results are presented and compared with

available experimental data of Ramaprian et ai.[64] who

measured the mean velocity and turbulent quantities in the

turbulent inner near wake region.

The converged pressure distribution near the trailing

edge of the flat plate along y+ - 150 over the plate and

wake centerline is shown in the Fig.IV-3. Fig.IV-3 shows

the pressure near the trailing edge, either upstream or

downstream, is lower than the free stream pressure which

is set equal to zero. The minimum pressure is located at

the trailing edge where the fluid experiences the maximum

acceleration and deceleration. According to Alber [62],
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the pressure gradient effect is mainly confined to a small

laminar wake region close to the trailing edge where x
+ <

100. Obviously, the present wall and wake function method

together with the k - e turbulence model can not predict

the detailed interaction in this laminar wake region.

However, the sharp reduction followed by a rapid increase

of pressure near the trailing edge and its slow recovery

in the wake is predicted by the present method as shown in

Fig.IV-3. The prediction of pressure distribution by

Patel and Chen (70] by two-layer model is given in Fig.IV-

4. There exists a small difference between the present

prediction and the calculation by Patel and Chen [70] in

the region of plate. However, both predictions give

nearly the same magnitude of trailing edge interaction.

The calculated result of the skin friction

coefficient is shown in Fig.IV-5 and compared with the

conventional flat-plate correlation. In general, Fig.IV-5

shows a good agreement between the, predicted value and

simple flat plate correlation. Since the pressure on the

plate drops rapidly near the trailing edge causing the

boundary layer to accelerate, the skin friction

coefficient near the trailing edge is expected to

increase. This increase, even though it is small, is well

predicted in the present calculation.
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Fig.IV-6 shows the comparison of the predicted wake

centerline velocity distribution with experimental data by

Ramaprian et al.[64] The first computational node along

the centerline is located approximately at x+ - 250. An

excellent agreement is obtained by the application of wall

and wake function method. As compared with the predicted

wake centerline velocity distribution by Patel and Chen

[70], which is shown in Fig.IV-7, the present wake

function method accurately predicts the wake development

without the detailed calculation of the laminar sublayer

on the plate and the laminar wake.

Figs.IV-8,IV-9, and IV-10 show the detail of the

predicted u-velocity component, Reynolds shear stress and

turbulent kinetic energy. The comparison of the predicted

results with experimental data is excellent. As mentioned

before, the direct imposition of symmetry condition or the

use of interpolation function as the symmetry condition

for u-velocity along the centerline may lead to

predictions of a higher u-velocity and lower turbulent

kinetic energy due to the inadequate grid concentration

near the wake centerline when the wall function method is

adopted in the calculation of boundary layer on the body.

On the other hand, the present method of combining the

wall and wake function clearly removes these difficulties.
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It should be mentioned that while the selection of

appropriate wake functions is important, an accurate

evaluation of the second nodal v-velocity component is

also important in achieving the accurate prediction of the

near wake turbulent structure. We note that the turbulent

kinetic energy and turbulent shear stress measurements of

Ramaprian et al. [64] give slightly higher values than

those of Pot [65] in the initial portion of turbulent

inner near wake region which can be seen at the locations

x = 25.4 mm and x = 127 mm.

A proper prediction of the v-velocity component in

the turbulent near wake region is very siginificant for

the accurate prediction of the flow structure since the

amount of mixing in this region is more or less related to

the v-velocity component. The second nodal v-velocity in

the wake region calculated from the present PSL (parabolic

sublayer) like treatment can not be confirmed due to the

lack of experimental data. A comparison with Alber theory

[62] is made. Two calculations are performed with a
+

different grid distribution near the wake centerline, Ay
c+

120 ( grid 1 ), Ay 200 ( grid 2 ) where Ayc is the

size of the first y-directional control volume in the wake

as shown in Fig.IV-2. Fig.IV-11 shows the comparison of

the present prediction with Alber theory (62] in the

turbulent inner near wake region. Good agreement is
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obtained but the integral formula gives a little grid

dependency.

Fig.IV-12 and Fig.IV-13 indicate the prediction of

velocity defect and Reynolds shear stress in the far wake

region where the velocity defect w ( = 1 - u ) becomes

small compared with u-velocity component. The assumption

of similarity of velocity and shear stress profiles leads

the half power law for the decay of the centerline

velocity defect wo ( = 1 - uc ) and the growth of the half

width b ( Yh = b/2 where w/wO = 1/2 ). According to

asymptotic theory [71],

b - x1 /2 , wo - x-1 /2  (IV-19)

A simple velocity defect and shear stress

distribution can be obtained [69] when one introduces a

constant eddy viscosity across the wake in the normal

direction for the momentum equation.

w/wo = exp( - 4 in2 112 ) (IV-20)

-uv/w = 4 ( X ln2 )1/2 (Vt/u8 ) 11 exp( - 4 in2 112

(IV-21)

where 1 = y/b, and Vt/u 8 = 0.032 which has been

confirmed by Rodi (74] from a survey of several sets of

experimental data. Fig.IV-12 and Fig.IV-13 show the
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comparison between present prediction and asymptotic

theory, Eq. (IV-20) and Eq.(IV-21). The velocity defect,

in general, is predicted well except near the edge of the

wake where the computed profile underpredicted the

asymptotic value. This may be due to the fact that the

turbulence model can not properly simulate the high

intermittance of turbulent and laminar flow occurring at

the edge of the wake. On the other hand, the turbulent

shear stress is underpredicted. This is a well known

defect of the current k - e turbulence model which was

already observed in the previous calculations (67], 169],

and [70]. An improvement in the turbulence modelling is

required in order to achieve a better agreement in the

prediction of turbulent structure in the far wake region

with the experiment. For example, Chen and Singh [75]

showed a better prediction can be achieved with the k - E

model based on the two turbulence scale concept where the

first scale is based on the turbulent kinetic energy, k,

and its dissipation rate, E, to characterize the large,

energy-containing eddies while the second scale, the

Kolmogorov scale, is based on the dissipation reate, E, and

the kinematic viscosity, v, to characterize the small,

energy-dissipating eddies.

A more sophisticated analysis of wake functions and

related calculation method is needed for the application
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of the present method to the calculation of wakes behind

bodies of streamline curvature for which the pressure

gradient effect are important.

IV.6. Conclusion

A new calculation method is presented in the present

study for an accurate prediction of turbulent wake flow

behind a flat plate. The method proposes a wake function

that models the laminar and turbuent wake immediately

downstream of the trailing edge of the plate from x+ = 0

to approximately x+ - 250. The combination of the wake

function for the near wake region and the wall function

for the near wall region on the plate provides a means for

accurate prediction of turbulent wake flow and eliminates

excess computational grids required near the wall and the

trailing edge and the uncertainty of the turbulence model.
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CHAPTER V

LAMINAR AND TURBULENT FLOW PAST A FINITE FLAT PLATE

V.1 Introduction

The classical problem of incompressible laminar and

turbulent flow past a finite flat plate has been studied

by numerous investigators. It Xs a problem that not only

provides much fundamental understanding of basic feature

of leading and trailing edge interaction, boundary layer

on the plate and wake development, but also of

considerable importance in diverse engineering

applications such as thin airfoil theory.

When the Reynolds number based on the plate length

and the free stream velocity is large, the laminar

boundary layer on the plate is described by the well-known

Blasius solution. However, the Blasius solution, which is

based on the boundary layer theory of Prandtl, does not

properly describe the flow field near the leading and

trailing edges of plate due to the breakdown of

assumptions made in the boundary layer theory.

Due to its geometric simplicity, the laminar flow

near the trailing edge of plate has been subject of
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various numerical and theoretical investigations. The

study of this problem provides us the basic understanding

of inviscid-viscous interaction at the trailing edge and

near wake development. According to the triple deck

theory of Stewartson [76] or Messiter [77], for infinite

Reynolds number flow, the laminar boundary layer on the

plate develops into Goldstein's near-wake through a small

transition region around the trailing edge which is known

as the triple-deck region. This triple deck region which

is embedded inside the boundary layer near the trailing

edge arises in order to avoid the .'jularity of the

boundary layer equations at the trailing edge. Melnik and

Chow [78] and Veldmen and van de Vooren [79] have obtained

the numerical solutions of the triple deck equations.

The breakdown of boundary layer theory for describing

the flow field near the trailing edge of plate leads many

investigators to use alternative approaches. Two

approaches are commonly used: the inviscid-viscous

interaction method [80]; and the numerical solutions of

fully elliptic or partially parabolic form of equations

[81,82]. Recently, Chen and Patel [81] have obtained the

numerical solutions of this problem using the elliptic

form of finite analytic numerical scheme. The grid

dependence and convergence tests, the influence of the

size of solution domain on the solution were investigated
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in detail. The predicted results were compared with

previous results by interacting boundary layer theory and

by partially parabolic numerical solution. One valuable

observation made in this study is that the solution domain

should be larger than that used in the previous studies in

order to capture the whole inviscid-viscous interaction

and far wake development and to obtain domain independent

solution. The same observation is also reported in Rhie

[83] in the calculation of laminar flow past a thin

airfoil.

However, most of the previous studies are confined to

the analysis of the flow field near the trailing edge.

Thus the leading edge interaction and the initial

development of boundary layer near the leading edge were

not considered. In order to remove the dependency of the

solution on the location of inlet solution boundary and to

obtain whole flow field past a plate, the calculations

should be started at the upstream of the plate with inlet

conditions provided by uniform flow conditions. The

earlier numerical solutions of the full Navier-Stokes

equations obtained by Dennis and Dunwoody [84] are limited

to relatively low Reynolds number flow. Xu and Chen [82]

has recently obtained a numerical solution of complete

laminar flow field past a finite flat plate using a novel

nine-point finite analytic numerical scheme. The
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predicted results of pressure distribution on the plate

and along the wake centerline, the wake centerline

velocity development and the friction coefficient

distribution near the trailing edge were presented with

comparision with previous studies.

In the present study, the classical problem of

laminar and turbulent flow past a finite plate is

reconsidered. The laminar flow past a finite flat plate

is first solved using both partially parabolic form of

finite analytic numerical method given in chapter 11-5-1

and elliptic form of finite volume method with modified

TEACH code. This practice will not only give a critial

evaluation of suitability of the partially parabolic form

of Navier-Stokes equations in the prediction of the strong

leading edge interaction but also provide us the

comparisions of results by both methods which has not been

made before. Then the numerical solutions of turbulent

flow past a finite flat plate is obtained by solving the

Reynolds averaged Navier-Stokes equations with the k - E

turbulence model and the wall function method. The finite

volume method is used in this calculation. This practice

will show how the introduction of turbulence model

influences the overall solution. The predicted results

are compared with available experimental data of Ramaprian

et al. [64].
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V.2. Numerical Grids and Solution Domains

The numerical grids are generated using the method

outlined in chapter 11-4-1 and the partial view of

generated grids are shown in Fig.II-3 for both laminar and

turbulent calculations. Table-3 shows the details of

solution domain and number of computational grids used in

the present calculations. The solution domain in normal

direction for laminar flow calculation is chosen to be y

- 12L in which Chen and Patel [81] obtained the domain

independent solution. The solution domain in the other

directions is also made large enough to capture the whole

leading and trailing edge interactions. The generated

numerical grids are treated as control volume lines and

the computational grid lines are placed at the center of

control volume lines.

V-3 Boundary Conditions

The upstream boundary conditions are specified by

following uniform flow conditions;

u 1, vx = 0, k = kin' E = Ein (V-l)

where kin and Ein is specified as follows

kin = 1.5 ( Tu )2 (V-2)
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.30/2/1(V3
in in in

and the turbulent intensity, Tu = 0.5% and length

scale, lin = 0.03L are used in the present calculations.

For laminar flow calculations, the no-slip condition

is specified on the plate. The wall function approach of

Launder and Spalding [43] is used for turbulent flow

calculation. The other boundary conditions are same as

those reported in chapter 11-3-2.

V-4 Numerical Method

The finite analytic computer code used in the

previous chapter is modified for the laminar flow

calculation. The well-known TEACH code (86] is used for

finite volume calculations with subtantial modification.

The solution procedures outlined in chapter 111-4 are

implemented to TEACH code which includes the change of

numerical algorithm, from SIMPLE to SIMPLER and the usage

of parabolic marching technique with global pressure

calculation procedure instead of fully elliptic

calculation procedure. Details of TEACH code are well-

documented in reference (86] and are not explained here.
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V.5 Results and Discussions

V.5.1 Laminar Flow Past A Finite Flat Plate

Calculations are performed for Re - 105 using both

partially parabolic finite analytic method outlined in

chapter 11-5-1 and elliptic finite volume method given in

reference [86). The same numerical grids are employed for

both calculations. Of 135 x-directional numerical grids,

35 grids are placed upstream of plate, 60 grids are placed

on the plate and 40 grids are placed in the wake region.

The first y-directional u-calculation point over the plate

is made Ay = 0.35x10 -3 and the minimum grid size at the
= 0.97x1-4anthmimu

leading edge is made (Ax) 0.897x104 and the minimum
= 02x1-2.

grid size at the trailing edge is made (Ax)t = 0.2x10

Time marching technique is employed for finite analytic

calculation with time step At = 1. The relaxation factors

used in the finite volume calculation are a = a v = 0.7

and ap = 0.5. Satisfactory convergence was obtained after

500 iterations for the calculation by finite volume method
-3

( RES = o.6617x10 ) and 1000 iterations for the

calculation by partially parabolic finite analytic method
-3

( RES = 0.2891x10 ) where RES denotes sum of mass

residuals in pressure correction equation divided by inlet

flow rate. It was observed that the velocity components
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and pressure field are settled down within 200 iterations

and the rest computational efforts are devoted to

reduction of the mass residuals to a certain degree.

The predicted pressure distribution on the plate and

along the wake centerline is shown in Fig.V-1. As shown

in the figure, the magnitude of leading edge interaction

is lager than the magnitude of trailing edge interaction.

However, the interacting region near the leading edge is

smaller than the interacting region near the trailing

edge. The comparision of predicted pressure distributions

by two different numerical schemes shows that both methods

predicted nearly same pressure distribution except near

the leading edge. The supurious pressure drop near the

leading edge predicted by the present partially parabolic

numerical scheme is not observed in the present elliptic

calculation or in the nine-point elliptic calculation by

Xu and Chen [82]. This fact shows that the partially

parabolic assumption may not be appropriate for the

simulation of strong leading edge interaction. However,

it is also shown that the partially parabolic assumption

is valid for the prediction of most of the boundary layer

on the plate, the trailing edge interaction and wake

development.
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The enlarged view of pressure distribution near the

trailing edge is shown in Fig.V-2. The magnitude of

trailing iteraction predicted by finite volume method ( ~

-0.01563 ) is slightly higher than that predicted by

partially parabolic finite analytic method ( - -0.01474 ).

The origin of this difference is not clearly understood.

For reference, the trailing edge pressure predicted by

Chen and Patel (81] using elliptic finite analytic method

is reported as -0.0152.

Fig.V-3 shows the distribution of friction

coefficient near the trailing edge by both methods. The

difference in friction coefficient near the trailing edge

by both methods is consistent with the predicted pressure

distribution in this region. The stronger interaction

cause stronger acceleration near the trailing edge and

larger penetration to the upstream of the plate. This

figure also clearly shows that the Blasius solution which

is based on the boundary layer theory is not adequate for

describing the flow field near the trailing edge.

The development of wake centerline velocity is also

affected by the trailing edge interaction when the

accelerated boundary layer at the trailing edge is

destroyed in the wake with adverse pressure gradient.

Fig.V-4 shows the predicted wake centerline velocity
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profiles in the wake region by two different nuomrical

methods. Little difference is evident, which is

consistent with the pressure distribution in this region.

There may exist some effects which are caused by using

different numerical treatments near the wake centerline.

In the finite volume method, the wake centerline velocity

do not affect the second nodal velocity in the wake by

placing the control volume surface along the wake

centerline and applying the symmetry condition and zero

normal velocity condition. In finite analytic method, the

wake centerline velocity affects the second nodal

velocity. These practice may result in smaller wake

centerline velocity prediction by finite analytic method.

However, this effect seems to be very small since the wake

centerline velocity prediction by the present elliptic

finite volume method more agree well with those reported

in Chen and Patel [81] who used elliptic finite analytic

method. It is also noted that these two elliptic

calculations have nearly same magnitude of trailing edge

interaction. Although there may exist some numerical

errors, it may be concluded that the fully elliptic form

of discretization equation should be used in order to

accurately capture the leading and trailing edge

interactions and thereby accurately predict the wake

development.
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However, the differences of predictions by two

different methods are very small and are confined to a

relatively small region. These effects are not

significant in the practical calculations when the

interaction is not weak as in the present problem.

V.5.2 Turbulent Flow Past A Finite Flat Plate

6
Calculations are performed for Re = 2.48x10 ,

corresponding to experiments of Ramaprian et al. [64),

using finite volume method with the standard k - e

turbulence model and the conventional wall function

method. Of 120 x-directional numerical grids, 30 grids

are placed upstream of plate, 55 grids are placed on the

plate and next 35 grids are placed in the wake region.

The first y-directional u-calculation point over the plate
-2 +

is made Ay = 0.164x10-2 which correspondins to y - 15 at

the trailing edge. The minimum grid size at the leading

edge is made (Ax)1 = 0.323x10-4 and the minimum grid size

at the trailing edge is made (Ax)t = 0.4x10-2 . The

relaxation factors used in this calculation are a au v

a k = a. = 0.8 and ap =0.5. Satisfactory convergence was

obtained after 500 iterations. ( RES = 0.4203x10 -3 )

Fig.V-5 and Fig.V-6 show the predicted pressure

distribution on the plate and along the wake centerline.
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There exists a sharp peak at the leading edge and a sharp

drop at the trailing edge followed by slower recovery in

the wake region. The predicted leading and trailing edge

interactions in turbulent flow are much weaker than those

in laminar flow by the introduction of turbulence model

and insufficient grid refinement in these regions. The

grid refinement in these regions is restricted since the k

- e turbulence model can only be applied to fully turbulent

region. Thus the detailed interactions near the leading

edge and in the laminar wake region near the trailing edge

can not be captured. Patel and Chen [70] explained that

the slower r-crvery of wake centerline pressure to ambient

value is r, Lated to the isotropic eddy viscosity

assumtcion in the k - e turbulence model;

2k

ax 3 5x (v-4)

The predicted friction velocity distribution on the

plate is shown in Fig.V-7 with a comparision of the simple

flat plate correlation given in Reference (87]. The

strange transition near the leading edge region is due to

the improper modelling of transition by k - E turbulence

model which is also observed in Rhie [83] in the

calculation of turbulent flow past a thin airfoil. There

exist a substantial difference between the prediction and

correlation even in fully turbulent region. It was found
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that the underprediction of friction velocity originates

from use of the wall function method. The first u-

velocity calculation point over the plate is placed around
+

y - 15 at the trailing edge to provide proper calculation

in the wake region. Thus all the first calculation points

on the plate are placed in the buffer layer. However, the

wall function region employed in the actual calculation is

divided into only two regions, laminar flow region ( y+ <

11.63 ) and fully turbulent region ( y+ > 11.63 ). Thus

the wall shear stress on the plate is calculated by way of

logarithmic law even though the first u-calculation point

is placed in the buffer layer. As a result, the friction

velocity is underpredicted even though the velocity is

overpredicted. The friction velocity in the turbulent

region is corrected using the third nodal u-velocity

component which lie in logarithmic layer and the law of

the wall. The corrected skin friction velocity is

consistent with the overprediction of velocity at the

trailing edge which is shown in Fig.V-9. The amount of

overprediction in friction velocity is not so serious as

shown in the figure. It may be suggested that the

predictions will be improved if the wall shear stress in

the wall function method is evaluated using the third

nodal velocity component in the practical calculation. It

was also found that the prediction of friction velocity
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was slightly improved when the first grid over the plate
+

was slightly increased to y + 30. However, this practice

was abandoned due to the very poor prediction in the wake

region which was explained in detail in the previous

chapter. It was also observed that the prediction was

extremely sensitive to the numerical grid distribution

near the wall region which was not observed in the

calculation of previous chapter in which two point wall

function method was adopted. This sensitivity of

prediction to the location of the first grid point is due

to the Couette-flow type wall function method usually used

in the finite volume calculations. It is noted that the

two-point wall function method can not be used in the

laminar flow region near the leading edge. The poor

prediction of friction velocity can be improved with more

advanced turbulence model which can properly describe the

flow field near the viscosity-affected near wall region.

Figs.V-8, V-9 and V-10 show the predicted wake

centerline velocity, mean velocity ditribution and

turbulent kinetic energy distribution in the near wake

region. The predicted results are only fairly good due to

the improper calculation of the boundary layer on the

plate. The overprediction of velocity profile at the

trailing edge results in higher velocity profiles and

smaller kinetic energy distributiou in the near wake
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region. However, these predictions are not much deviated

from the experimental data as shown in these figures. It

is shown that as the flow approaches downstream, the flow

becomes to lose the memory of boundary layer on the plate

and the predictions agree better with the experimental

data.

Although only fairly good predictions were achived

due to improper modelling of transition and near wall

turbulence, the present study achieves the prediction of

whole turbulent flow'past a finite flat plate. The

predictions can be improved if a suitable turbulence model

is used. However, there does not exist a general

turbulence model which can properly describe the

transition of laminar to turbulent and the flow field in

the viscosity-affected near wall region.
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CHAPTER VI

TURBULENT FLOW PAST AXISYMMETRIC BODIES

VT.I Introduction

In order to design an optimal ship body and ship

propelling system, it is very important to have a

fundamental understanding and to be able to make an

accurate prediction of fluid flow past various ship

bodies. The accurate prediction of turbulent flow near

the ship stern region is particularly important since many

propellors and appendages are located inside the ship

stern boundary layers. The flow evolution in this ship

stern region is characterized by a rapid growth of

boundary layer, a strong viscous-inviscid interaction and

a general reduction in the level of turbulence by

streamline curvature and pressure gradient [881 which is

quite different from that in the hull region. These flow

features show that the thin boundary layer approximation

is not adequate for describing the flow field around the

ship stern region although it may be suitable for

describing the flow field around the ship hull region.
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A review of the state-of-the-art of available

experimental and numerical investigations of turbulent

flow past axisymmetric bodies was recently made by Patel

and Chen [89]. According to this detailed survey, many

reliable experimental informations are available at

present which can be used to verify the accuracy of

numerical calculations. Chevry [90] made measurements of

mean flow and turbulent quantities in the wake of 6 to 1

spheroid. These data provide quite detailed informations

on the near wake evolved from the a separated flow just

ahead of the tail region of spheroid. The experiment of

Patel et al. [88] was conducted on the same model but the

separation was eliminated by means of a short conical tail

attachment. They measured the development of thick

boundary layer on this modified spheroid. Patel and Lee

[91] made extensive measurements on the boundary layer and

near wake development of turbulent flow past a low-drag

body ( F-57 body ). Since above two measurements are made

normal to the body surface using boundary layer

coordinates, it is difficult to use these data to compare

with practical calculation if numerical grids are not

generated in the same manner. The extensive experimental

data measured by Huang et al. [92,93,94] for four

different afterbodies, afterbody-1, afterbody-2,

afterbody-3, afterbody-5, provide the detailed
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informations on the thick boundary layer and the near wake

development. These four bodies have the same streamlined

forebody and parallel middle body, but have different

afterbodies. All of these bodies have an inflection point

and quite dramatic changes in surface curvature which

induce a strong favorable and adverse pressure gradient

over the stern region and propellor hub region. In the

case of afterbody-3, experimental data indicate that there

is a small separation bubble around the inflection point.

These data have been widely used in the previous studies

[89,95,96,97,98,99) for the evaluation of calculation

methods and turbulence models. These data are also used

in the present study to compare with the calculated

results.

Many numerical efforts have been made in the past

decade to compute this complex flows near the tail region

of the axisymmetric bodies. These efforts have involved

with different approximations made in the governing

equations, with different turbulence models and with

different calculation methods. According to the survey by

Patel and Chen [89), the previous calculation methods can

be broadly classified into three categories, the non-

interactive numerical solution of thin layer or boundary

layer equation with the pressure field given by

experimental data [91], the viscous-inviscid interaction
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method [100,101,102] and the global numerical solutions of

partially parabolic or elliptic equations [89,98]. Among

these methods, the global numerical solution method is the

most attractive since this method does not require the

experimental informations of pressure field or another

numerical solution of inviscid flow. It is interesting to

note that the recently developed calculation methods

outlined in chapter-I have not been applied to this

problem except the works of Patel and Chen [89]. The

calculation methods used by Muraoka [97,103] or Markatos

[98) are not general and can only be applicable when the

numerical grids are generated in a special algebraic

manner. It is also noted that most of previous

calculations start at the middle of body to avoid the

numerical difficulties associated with the calculation

near the leading edqe.

In the present study, numerical solutions of

partially parabolic or fully elliptic form of Reynolds-

averaged Navier-Stokes equations in numerically generated,

nonorthogonal coordinates are obtained through the

calculation procedure outlined in chapter-II and chapter-

III. The complex, physical geometry is resolved by the

use of nonorthogonal, body-fitted coordinates which are

generated through the solutions of Poisson equations with

appropriate grid control functions. The governing
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equations are written in the transformed coordinates by

the partial transformation where the original orthogonal

velocity components are left as dependent variables.

These transformed governing equations are discretized

using the finite analytic method by Chen and Chen [33

which was already explained in chapter-II. The finite

volume method is also applied to some problems in order to

provide comparisions of two different numerical schemes in

the prediction of turbulent boundary layer and wake of

axisymmetric bodies. The one-velocity staggered grid

technique is employed for all the calculations presented

in this chapter. The derivation of pressure and pressure

correction equations in this grid configuration is given

in chapter 111-3-1.

Since there are strong pressure gradient and

streamline curvature effects on the flow near the stern

region, some considerations should be made for the

selection of tuorbulence model. The zero equation models

of Cebeci-Smith model or Baldwin-Lomax model and the one

equation model have been used in the earlier calculations

[91,95,96,101] with some modifications. However, the k -

turbulence model with wall function method has been the

most widely employed in the recent calculations

[89,97,102,103]. The defect of the k - e turbulence model

in the calculation of flow involving pressure gradient
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effect is well explained by Rodi and Scheuerer [54]. The

poor performance of the current k - E turbulence model is

caused by inaccurate modelling of the e - equation. For

example, the length scale determined using the E - equation

rises steeper near the wall region in the adverse pressure

gradient region while the experimental data shows that the

length scale is virtually independent of the presure

gradient. By this reason, the turbulence models using the

empirical length scale specification near the wall region

yield much better predictions for the adverse pressure

gradient boundary layers than does the current k - E

turbulence model. Rodi and Scheuerer (54] suggest use of

Hanjaliac and Launder's model [104]. On the other hand,

Chen and Patel [56] developed a two-layer turbulence model

to consider the pressure gradient and streamline curvature

effects and flow separation. Their model has been

successfully applied to the prediction of turbulent flow

past axisymmetric bodies.

In the present study, some calculations are performed

using the conventional k - E turbulence model and wall

function method in which the pressure gradient effect is

embodied in the wall function while some calculations are

performed using the two-layer turbulence model of Chen and

Patel (561.
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VI.2 Two-Layer Model

In the two-layer model, the calculation region is

divided into two regions; a near wall region and an outer

region, as shown in the Fig.VI-1. The boundary between

the near wall region and the outer region is placed around

y+ - 100. The near wall region includes the laminar

sublayer, buffer layer and a part of logarithmic layer

ajacient to the body. In this region, calculations are

carried all the way to the wall using the one equation

turbulence model where the rate of turbulent kinetic

energy dissipation E and the turbulent eddy viscosity Vt is

specified by algebraic relations to consider the wall

proximity viscous effects. The outer region is the upper

region of the near wall region over the body and the whole

wake region. The standard k - e turbulence model is used

to simulate this fully turbulent region.

Three one equation turbulence models such as Hassid

and Poreh's model [481, Norris and Reynolds's model [49],

Wolfshtein's model [47] were tested in the course of

present investigation. However, the Wolfshtein model is

chosen in the present study by the simple reason that the

other two models slightly overpredict the wall shear

stress compared with the Wolfshtein model.
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In the Wolfshtein model, the turbulent eddy viscosity

Vt and the rate of turbulent kinetic energy dissipation e

is specified by a simple algebraic form as following;

k3 /2

(VI-1)

Vt  c k1/2 1 (VI-2)

where the length scales 1 , i contain the viscosity

damping effect in the near wall region in terms of

turbulent Reynolds number Rk.

1ig = c I n [1 - exp( - Rk / A) (VI-3)

i£=c I n I - exp( - Rk /AF (VI-4)

where

1/2 -3/4
Rk = Re n k , c =0.09, c =K c9

AE = 2 cl, AI= 70.

and n is the normal distance from the wall.

These constants are evaluated by Chen and Patel [561

and somewhat different from those reported in Wolfshtein

[47] or Yap [58].
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V1.3. Numerical grids and Solution Domains

The numerical grids are generated using the grid

generation technique outlined in chapter 11-4-2. The

generated numerical grids for four different afterbodies

are shown in Fig.II-4. The detailed informations on the

solution domains are given in Table 4 and Table 5. These

solution domains are large enough to capture the whole

viscous-inviscid interactions and wake development.

VI.4 Boundary Conditions

In the half body calculations using the wall function

method, the upstream inlet conditions were specified by

following simple correlations.

S ln y + B (VI-5)

u1 K

-1/2 2 - Y- (VI-6)k =c u (V16)

3/4 k3/2
e c /K y (VI-7)

+

where y = Re u.y, K is von-Karman constant, K = 0.42

and B = 5.5. The boundary layer thickness 8 and friction

velocity u,, = (Tw/p)1/2 are provided by experimental data.

The wall function method employed in the present

study is a little different from the conventional wall
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function method usually used in the control volume method.

In the present study, it is assumed that at least two u-

calculation nodes are located in the logarithmic region.

The friction velocity uI is first determined by iterative

method using the velocity components in the third node

which is obtained from the previous iteration and

following the generalized form of the law of the wall [4]

in which the pressure gradient effects on the flow in the

wall region are taken into consideration.

. .- . ( ln ( 1 + A Z n+  )1/2 - 1

u 1C AZ (1 + A n + )1/2 + 1

+ 2 [ ( 1 + A n + )1/2 - 1 ] } + B + 3.7 Ap (VI-8)

where n+ Re uz n is dimensionless, normal distance

3from the surface, Ap = - Ap / ( Re u ) is the

dimensionless pressure gradient on the body surface, A is

the dimensionless shear stress gradient and is assumed to

be Ap, q is the magnitude of velocity or q= u2 + v2
2 p1/2K = 0.418 is the von-Karman constant, and B = 5.45.

Then the magnitude of velocity in the second node q2

can be calculated using this friction velocity and Eq.(VI-

8) while the velocity components parallel to - grid line

are calculated by the following relations.
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q r (b 1 u 3 + b2 v 3 ) (VI-9)

q4 q4 (VI-10)
q3

where the geometric coefficients J and bi are given
2 2

in Eqs.(II-58) and (11-59) and gll = x4 + y4.

The u, v, k, £ values at the second node are

evaluated using the friction velocity and following

relations.

u (VI-li)

v2 = (VI-12)

-1/2 2
k 2 = c. u (VI-13)

3
£2 = uI / Ky (VI-14)

The details of this two-point wall function method is

given in Chen and Patel [4]. The advantage of this two-

point wall function method is that the sensitivity of the

solution to the location of the first grid point, which is

found in other Couette-flow type wall function method

usually used in the control volume method, is removed.

In the two-layer calculations, the upstream u-

velocity boundary condition near the wall is specified by

following Spalding's velocity law:
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+
+ + -~KB -K:u + + 2/

y = u + [ e - 1 -u - (Ku)/2

+ 3
- (Ku ) /6 ] (VI-15)

The inlet boundary conditions for turbulent

quantities in the inner layer are specified by following

correlations given in Patel and Chen [701 while turbulent

quantities in the outer layer is specified by Eq. (IV-6)

and Eq. (IV-7) .

+ +)2 +
k = 0.05 ( y ) y < 5 (VI-16)

+ +
= 1.25 + 0.325 ( y - 5 ) 5 < y < 15

+ +
= 4.5 + ( y - 15 ) / 37.5 15 < y < 60

+
= 3.3 60 < y < 120

and

+ + +
e = 0.1 y / 120 y < 12 (VII-17)

+ +
= 1 / Ky y >12

The dimensionless quantities in these equations are
+ 2 + 4 +

defined as k k = / ( Reu ) , y = Re u y

and u -u / uz.

The other boundary conditions are same as those

reported in chapter 11-3-2.
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VI.5 Results and Discussions

VI.5.1 Prediction of Turbulent Flow Past Axisymmetric
Bodies using Wall Function Method

Calculations are performed for three different

axisymmetric bodies of DTNSRDC, afterbody-1, afterbody-2

and afterbody-5. Both finite analytic method and finite

volume method are used to solve Reynolds-averaged Navier-

Stokes equations with the k - £ turbulence model and two-

point wall function method. The same numerical grids and

boundary conditions are employed for both calculations.

The time marching technique is employed for finite

analytic calculations with time step At = 1 and pressure

relaxation factor a = 0.2. The relaxation factors used inp

the finite volume calculations are au = av = 0.7, ak = a.

= 0.8 and ap = 0.5.

Figure VI-2 shows the convergence history of both

calculations for the afterbody-1. The calculation by

finite volume method converges faster than that by finite

analytic method in the earlier stage. However, the

calculation by finite volume method has a limit in

convergence. This limited convergence originates from use

of one velocity staggered grid method which is also

reported in Shyy et al. [24]. As will be shown in the
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next chapter, use of two velocities staggered grid method

eliminates this deficiency. The calculation by finite

analytic method monotonically converges without a limit

although the same one velocity staggered method is used.
-3

Satisfactory convergence, RES < 2x10 , was obtained

within 100 iterations for both calculations where RES

denotes the sum of mass residuals in the pressure

correction equation divided by the inlet flow rate.

However, the pressure and velocity fields are settled down

within 50 iterations as shown in Figs.VI-3 to VI-8. These

figures show that convergences of boundary layer and wake

development by finite analytic method are a little faster

than those by finite volume method. This is due to the

fact that the relaxation factors in the finite volume

method is same in the whole computational domain while

relaxation factors in the finite analytic method are

changed according to the size of numerical grid and the

magnitude of convecting velocity components which is

another novel nature of the finite analytic method.

Figs.VI-9 to VI-I show the converged pressure
2

distributions, Cp = 2(p-pC)/(pU ), on the body surface

and along the wake centerline for afterbody-1, afterbody-

2, and afterbody-5. As shown in the figures, the

agreement between the predictions and measured data is

excellent. The differences in the prediction by two
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different methods are small and are confined to only the

region of inlet, propellor hub and trailing edge. The

dramatic change of pressure in the stern and propeller hub

region is well predicted. The pressure is recovered in

the wake at a distance roughly 0.3L from the trailing edge

of the body. Since the solution domain of the present

study extends far beyond this distance, the whole viscous-

inviscid interaction is completely captured.

Figs.VI-12 to VI-14 show the comparision between

predicted and measured friction velocity. Fairly good

agreement between predictions and measurments was obtained

in the stern region. The slight disagreement in the

upstream region may due to the simple imposition of inlet

conditions. The results can be improved if the accurate

inlet conditions of velocity and turbulent quantities are

provided by experimental data. The finite volume method

consistently overpredicts the fri'ction velocity in all

calcultions. As shown in the figures, there is steep drop

of friction velocity in the adverse pressure gradient

region and the flow is very near to separate at x = 0.93L

for afterbody-5, x = 0.97L for afterbody-2 but no flow

separation is predicted.

F:.gs.VI-15 to VI-17 show the radial pressure

distribution in the stern and near wake region.
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Satisfactory agreements between the prediction and

measurements are made although they are not as good as

those of pressure distribution on the body surface. The

small discrepancies may be partly due to the

difficultities in the measurements. The differences in

prediction between two methods are small and are again

confined to the regions of propellor hub and trailing

edge. We note that the viscous-inviscid interaction

extends radially to 0.35L from the surface of the body

near the trailing edge. This fact shows the failure of

thin boundary layer approximation for the present problem

and some careful considerations should be made for the

selection of radial direction solution domain. In the

present study, the computational domain extends radially

to Yu - 1.1L as shown in Table 4.

Comparisions of the predictions with the measured

data for both axial and radial velocity components is seen

in Figs.VI-18 to VI-20. The agreements between measured

data and the predictions by finite analytic method is

excellent. The finite volume method slightly overpredicts

the axial velocity component, especially near the tail

region and in the near wake region. One may notice the

thickening of boundary layer in the tail and in the near

wake region which is consistent with the pressure

variation in these regions.
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The turbulent kinetic energy in the tail region and

in the near wake region is overpredicted as shown in the

Figs.VI-21 to VI-23. The amount of overprediction is more

severe in the prediction of afterbody-5 and afterbody-2

than that in the afterbody-l. The differences in

prediction by two methods are small and consistent with

the predicted velocity profiles. It is noted that the

predictions of turbulent kinetic energy made by Huang and

Chang [99] agrees quite well with experimental data. They

used a different near wall treatment instead of the wall

function method. As will be shown in the next section,

the use of two-layer model slightly improve the

prediction. From these observations, the overprediction

of turbulent kinetic energy in the tail and near wake

regions seems to be originated from the inadequacy of k -

turbulence model in the prediction of fluid flow involving

pressure gradient and streamline curvature effects. The

other predictions made by Patel and Chen (89], Muraoka

[97,103] using the k - £ turbulence model and the wall

function method show the similiar trend as in the present

prediction.

Overall agreements between measurements and

predictions made using both methods are encouraging. For

most of the stern region and near wake region, the
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pressure and velocity components are accurately predicted.

But some considerations must be made on the selection of

turbulence model especially on the near wall treatment in

order to accuately predict the turbulent quantities for

the flow involving pressure gradient and streamline

curvature effects. Although predictions by finite

analytic method are in favor for all the calculations, the

differences in the predictions by two different numerical

schemes are small. It shows that the selection of

numerical scheme is not important for calculating of

boundary layer type flow where the numerical false

diffusion effects are very small. The overall success of

present calculations are mainly due to the use of two-

point wall function method. However, the use of two-point

wall function method is limited and can not be confidently

applied to the flow involving separation. Calculations

are also made using the partially parabolic form of finite

analytic method although it is not presented here. The

differences in predictions between partially parabolic

calculations and elliptic calculations were found to be

negligible. This fact shows that partially parabolic

assumption is a good approximation if there is no flow

separation.
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VI.5.2 Prediction of Turbulent Flow Past Axisymmetric
Bodies by Two-Layer Model

Calculations are performed for four different

axisymmetric bodies of DTNSRDC, afterbody-1, afterbody-2,

afterbody-3 and afterbody-5. The partially parabolic form

of finite analytic method explained in chapter 11-5-3 is

employed to solve Reynolds-averaged Navier-Stokes

equations with two-layer model. The FLARE approximation

where the 4-directional convecting velocity ( D in Eq.(II-

84) ) is zero if it is less than zero is employed in order

to properly handle the flow separation ocurring during the

iteration process. The introduction of FLARE scheme is

come from the observation made by Ramakrishnan and Rubin

(105]. They found that the FLARE scheme was the most

stable for the calculation of small separated, high

Reynolds number flow. The time marching technique is

employed for iteration process with time step At = 0.002.

Satisfactory convergence wL, obtained after 1000 time

marching.

Figs.IV-24 to IV-27 show the converged pressure
2

distributions, Cp - 2(p-p )/(pU ), on the body surface and

along the wake centerline. As shown in the figures, the

agreements between the measured data and the predicted

results are fairly good. The pressure is a little
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sensitive to the shape of the body surface as compared

with predictions using the wall function method. It is

due to the fact that pressure is calculated all the way to

the wall in the two-layer calculations while pressure on

the body surface is extrapolated from the wall function

region to the body surface using a simple linear function

in the calculations using the wall function method. It is

noted that the predictions for afterbody-3 are possible by

use of the two-layer model.

Figs.IV-28 to VI-31 show the comparisions between the

predicted and measured friction velocity. Athough fairly

good agreements are made in the hull region, systematic

overpredictions are made in the tail region. The

overprediction of friction velocity in the tail region may

be partly due to the numerical difficulties in the

generation of fine numerical grid near the wall in the

tail region of the body and may be partly due to the fact

that even the one equation turbulence model tends to

overestimate the velocity in the near wall region

indicating a reduction of turbulence length scale in the

tail region. It is noted that flow separation was not

predicted in the present calculation for afterbody-3 in

which experimental data indicate there exist a small

separation bubble around the inflection point. Figs.VI-32

to VI-33 show the predicted friction velocity for
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afterbody-3 and afterbody-5 by Chen and Patel (56] using

the same two-layer model and the nine-point finite

analytic method. There exist substantial differences

between two predictions. The origin of these differences

can not be clearly explained since the details of

pressure-velocity coupling technique are not reported in

Chen and Patel [56]. However, the present predictions

does not show the strange overshoots which is observed in

the predictions by Chen and Patel [56].

Fairly good agreements between the predictions and

the measured data were obtained for both the axial and

radial velocity components which can be seen in Figs.VI-34

to VI-37 except the axial velocity component is slightly

overpredicted in the tail region as explained before.

The overprediction of turbulent kinetic energy in the

tail region and in the near wake region in the

calculations using the wall function method is slightly

improved by using the two-layer model as shown in the

Figs.VI-38 to VI-40. This observation shows that the

defect of the k - e turbulence model in the calculation of

turbulent boundary layer and wake involving pressure

gradient and curvature effects is a little relieved by the

introduction of one equation turbulence model for the

calculation of flow near the wall region.
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Overall agreements between measurements and

predictions made by the present finite analytic method

with both wall function method and two-layer model are

satisfactory. For most of the stern region and the near

wake region, velocity components and turbulent quantities

are accurately predicted except that the axial velocity

component is overpredicted in the two-layer calculation in

the tail region of body. The origin of this

overprediction should be clearly investigated. It was

found that the inlet condition severely influence the

overall solution. Thus the proper ways of specifying the

inlet condition should be sought. When it is considered

the fact that the two-layer calculation not only provides

the numerical solutions of laminar sublayer, buffer layer

and a part of logarithmic layer without excessive

numerical efforts but also the two-layer model can be

applied to separated flow region to which the wall

function method can not be confidently applied, the use of

two-layer model is highly recommended.
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CHAPTER VII

TURBULENT FLOW PAST FINITE AXISYMMETRIC BODIES

VII.1 Introduction

Incompressible turbulent flow past axisymmetric

bodies of finite length has been the subject of numerous

investigations, as it is of major importance in

aerodynamics and hydrodynamics. In most of previous

studies, the calculations start at the middle of body with

inlet conditions provided by curve fits of experimental

data [97], simple flat plate correlations [56,89] or

numerical solutions of boundary layer equation up to the

inlet location [103]. However, these calculations do not

provide the solution of leading edge interaction and

initial development of boundary layer near the leading

edge. The resulting solutions are dependent on the inlet

conditions as shown in the previous chapter or the

location of inlet boundary [81].

In order to avoid above deficiencies in the half body

calculations and to obtain the solution of the whole flow

field, the calculation should start far upstream of the

body with inlet conditions provided by unform flow
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condition. However, numerical solutions of incompressible

turbulent flow past axisymmetric bodies, including the

leading edge interaction, boundary layer development on

the body, the trailing edge interaction and the wake

development, is rarely seen in the literature. For two

dimensional flow situations, Rhie and Chow [16] obtained

the numerical solutions of turbulent flow past airfoils

with or without angle of attack using the k - £ turbulence

model and the wall function method. The C-type, body-

fitted coordinates were introduced to handle the complex

physical geometry and the SIMPLE numerical algorithm was

employed with non-staggered grid arrangement. Detailed

numerical solutions of laminar and turbulent flow past a

cicular cylinder were obtained by Majumdar and Rodi [55].

They used an orthogonal coordinate system with staggered

grid arrangement. The k - £ turbulence model was also

employed in this study. An improvement of prediction by

using the zero equation turbulence model in the near wall

region instead of the wall function method is reported.

Since the physical solution domain has a complex

geometry which requires the use of nonorthogonal, body-

fitted coordinate system, some considerations should be

made about the choice of calculation methods in this

coordinate system. Among the several calculations methods

outlined in chapter I, the two velocities staggered grid
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method developed by Maliska and Raithby (30] keeps the

novel nature of staggered grid arrangement without any

numerical problems encountered in the use of one velocity

staggered grid method although the use of this grid

configuration requires a little more computer storage and

computing time by storing both velocity components at each

control volume surface. It is reported in Maliska and

Raithby [30] that the computational efforts using this two

velocities staggered grid method is not so grave as it

looks by its relatively earlier convergence. This grid

configuration allows to use H-type grid as well as C-type

grid to which the one velocity staggered grid method may

not be applicable. Therefore the two velocities staggered

grid method is employed for all the calculation presented

in this chapter with some modifications made from the

original method by Maliska and Raithby [30].

In the initial phase of present study, some

computational experiments were made using the finite

analytic method and the two-point wall function method

outlined in the previous chapter. However, this practice

was abandoned since the two-point wall function method did

not properly describe the laminar flow near the leading

edge even in the simple flat plate calculation. It was

also found that the general law of the wall, Eq.(VI-8),

had singularity in the region of favorable pressure
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gradient giving a negative argument in the logarithmic

function. Although this two-point wall function method

has a salient feature of removing the sensitivity of the

first grid location on the solution, the application of

this method to general flow situation is limited. After

testing other possibilities, it was decided to use the

same numerical scheme and the near wall treatment as those

reported in Rhie and Chow [16] or Majumdar and Rodi (553.

These authors used the finite volume method and the

Couette flow type wall function method by Launder and

Spalding [433. However, the numerical solutions using

this wall function method usually suffer the sensitivity

of the solution on the numerical grid and the

overprediction of the axial velocity component in the

adverse pressure gradient region due to the neglection of

the pressure gradient effect in the wall function.

In the present study, numerical solutions of

incompressible turbulent flow past axisymmetric bodies are

obtained using the k - E turbulence model and the wall

function method. The complex, physical solution domain is

resolved by the use of numerically generated,

nonorthogonal, body-fitted coordinates. The governing

equations are written in the transformed domain with the

cylindrical veolcity components as the dependent

variables. The transformed governing equations are



140

discretized using the finite volume method with hybrid

numerical scheme as outlined in chapter 11-6. As

mentioned before, the two velocities staggered grid

method is adopted and the derivation of pressure and

pressure correction equations in this grid configuration

is given in chapter 111-3-2.

Calculation are performed for four axisymmetric

bodies of DTNSRDC using the calculation procedure outlined

in chapter 111-4. The numerical results are compared with

the experimental data.

VII.2. Numerical Grids and Solution Domains

In the initial phase of present study, use of C-type

numerical grid was seriously considered due to the

roundness of forebody shape. The introduction of two

velocity staggered grid method should be understood within

this context since the use of one velocity staggered grid

method in C-type grid may cause numerical instability.

However, the use of C-type grid was abandoned due to the

difficulties in the specification of boundary conditions.

The numerical difficulties related with the use of C-type

grid are well reported in Rhie [83] and Chen and Patel

(106]. For example, Chen and Patel (106] first performed

calculation using H-type grid. Then the boundary
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conditions for calculation by C-type grid are specified by

these calculated results. In order to avoid these

difficulties, it was decided to change the forebody shape

up to xi = 0.3L and to use H-type grid. The forebody

shape was changed to orgive shape using following simple

equations;

R = Rmax R + ( R x - x i ) 2 1/2 (VII-1)

max i

where Rmax is the maximum radius of body and Ri is

defined as following relation.

2 2
= (Rmax + xi ) / ( 2 Rmax ) (VII-2)

As will be seen later, the change of forebody shape

does not seriously influence the develoment of boundary

layer in the region of middle body and tail since these

DTNSRDC bodies have long parallel middle bodies.

The numerical grids are generated using the method

outlined in chapter 11-4-2. The partial view of generated

numerical grids are shown in Fig.II-5. The x-directional

numerical grids on the body are distributed uniformly

while those in the upstream of body and in the wake region

are stretched with expansion ratio 1.2 - 1.3. Table 6

shows the detailed information on the flow condition, grid

and solution domains used in the present calculation.

These solution domains are large enough to capture the
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whole leading and trailing edge interactions. Of the 151

x-directional numerical nodes, 20 nodes are placed

upstream of body, 101 nodes are placed on the body and the

rest 30 nodes are placed in the wake.

VII.3 Boundary conditions

The inlet boundary conditions are specified by

following uniform flow conditions.

u = 1, vx = 0, k = kin, £ = Fin (VII-3)

where kin and Cin is specified as follows

2
ki =1.5 ( Tu ) (VII-4)in

.3/2
k = c/2 / 1 (VII-5)

in in in

and the turbulent intensity, Tu = 0.5% and length

scale, lin = 0.001L are usea in the present calculations.

In the wall function region, the wall function

approach of Launder and Spalding [43] is used. It is

based on the one-dimensional Couette flow analysis. The

wall shear stress, T is expressed as a function of thew

second nodal velocity component parallel to the wall, Up

as follows;

w w a P (VII-6)
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where the coefficient, X is determined from the two-w

part universal velocity profile.

Xw = g / Bn if y < 11.63 (VII-7)

= 1/ .1/2

Xw = c1/4 k K/ ln( E yp ) if yp > 11.63 (VII-8)

In these equations, K = 0.418 is the von-karman

constant and E = 0.9793 is the roughness parameter, Sn is
+

the normal distance from the wall and yp is defined as

follows;

+ 1/4 1/2 -9)
yp =p c k Sn/ (VII

Since the dependent variables of momentum equations

are cylindrical velocity components, the shear force, Tw =

A w should be expressed in terms of its cylindricalAww

components. The shear force, Tw acting along Up direction

is decomposed into two components T and T along x andwx wy

y directions repectively as follows;

T = - X A C ( 1 - n1 n1 ) u - nl n2 v ](VII-10)wx w w p p

T = - X A [ ( 1 - n2 n2 ) v - nl n2 u ] (VII-II)
wy w w p p

where nl and n2 are the components of the unit vector

normal to the wall along the x and y directions

repectively.
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nl = - ( ,Y/ )w (VII-12)

n2 = (4 4x y ) )w (VII-13)

2 2
and the geometric coefficient y = x4 + y4.

The equations for turbulent kinetic energy, k and its

dissipation rate, £ also need a special treatment for the

near wall cell. In the equations for k, the diffusion

flux through the wall surface is set equal to zero while

the source terms are modified as follows.

The generation and dissipation term of turbulent

kinetic energy equation is approximated as follows using

the Couette flow assumption;

fA G dV IT I IU pI AV / 8n (VII-14)

3/4 .3/2 +

V C dV  c kp Up AV / Sn (VII-15)
+

where U is given by
p

+ + +
up= yp if yp < 11.63 (VII-16)

+ 1+ +
U =-n( E y) if y > 11.63 (VII-17)
P IK

The value of e in the near wall cell is obtained from

the local value of k using the concept of local

equilibrium between production and dissipation of

turbulent kinetic energy as follows;
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EP=C3/4 k3/2 K ( Sn )(VII-18)

Since the details of this wall function method is

well-documented in Launder and Spalding [43] or Peric

[18], only a brief description of this method is given in

the present study.

The other boundary conditions are same as those

reported in chapter 11-3 and not explained here.

VII4 Results and Discussions

Calculations are performed for four axisymmetric

bodies using the finite volume method outlined in chapter

11-6. The relaxation factors used in the present

calculations are au = av = 0.7, ak = 0.8 and a=

0.5.

Fig.VII-i shows the convergence history of

calculations for afterbody-1. The total mass residual

decreases rapidly for the first fifty iterations. However,

the rate of convergence slows down after fifty iterations.

It is also noted that the calculation using the coarse

grid gives a faster convergence. Satisfactory

convergence, RES < 2x10 4 , was obtained within 300

iterations although computations are continued to 500

iterations where RES denote sim of mass residuals in the
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pressure correction equation divided by inlet flow rate.

In general, the velocity components and pressure field

were settled down within 100 iterations and the rest

computational efforts are devoted to the development of

far wake.

Figs.VII-2 and VII-3 show the grid dependence tests

for pressure and friction velocity. They show that

present calculations are generally grid independent except

for a small region near the leading and trailing edges.

It should be noted that the first three y-directional

computational grids near the wall were fixed for both

calculations to avoid errors caused by the near wall

treatment.

Figs.VII-4 to VII-7 show the converged pressure
2

distributions, Cp = 2(p-p.)/(pU ), on the body surface and

along the wake centerline for four different afterbodies.

The leading and trailing edge interactions as well as the

dramatic change of pressure in the regions of stern and

propellor hub are well predicted. The agreement between

the predictions and measured data is also fairly good

except pressure is overpredicted in the tail region of

afterbody-3. This overprediction is the result of the

inadequacy of the present k - E turbulence model with the

present wall function method for describing the flow field
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in this region. It is noted that although the magnitude

of leading edge interaction is large, the interacting zone

is confined to a small region. The pressure is recovered

in the wake in a distance roughly 0.3L from the trailing

edge of the body. Since the solution domain of the

present study extends far beyond this distance, the whole

viscous-inviscid interaction is completely captured.

Figs.VII-8 to VII-11 show the predicted friction

velocity distribution with comparision with measured data.

There exist a strange transition near the leading edge

which is originated from inproper modelling of transition

by present k - £ turbulence model. The friction velocity

is underpredicted in the region of middle body in spite of

velocity components in this region are somewhat well

predicted as will be shown in the next figures. As well

explained in chapter V, the origin of this discrepancy is

come from the usage of the wall function method in the

fact that although the first normal calculation point is
+

placed in the buffer layer ( y + 20 ), the friction

velocity is calculated by the logarithmic law. The

increase of the size of the first grid would improve the

prediction of friction velocity. However, this practice

was abandoned due to the very poor overall predictions

especially in tail region of the body. From these

observations, it is suggested that the wall function
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region should be at least divided into three regions,

laminar sublayer, buffer layer and logarithmic layer as

reported in Lee (107]. The use of more elaborated wall

functions by Launder and Chieng [108] will also improve

the predictions. However, these practices are not

performed in the present investigation. A subtantial

overprediction of friction velocity is observed in the

tail region of body, especially in the predictions for

afterbody-3 and afterbody-5. These overprediction is due

to the neglection of pressure gradient effect both in the

turbulence model and in the wall functions. However, as

mentioned before, the use of general law of the wall,

Eq.(VI-8), leads to singularity in the region of favorable

pzessure gradient. It is noted that flow separation is

not predicted for afterbody-3 although experimental data

iidicate that there exist a small separation bubble around

the inflection point. It is believed that the use of more

advanced turbulence model, for example the two-layer

tirbulence model, will remove all the defeciencies arised

trom using wall function method.

Comparisions of the predictions with the measured

data for both axial and radial velocity components are

shown in Figs.VII-12 to VII-15. The agreements between

measured data and the predictions are fairly good except

the velocity components are a little overpredicted in the
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tail region and in the near wake region due to the

neglection of pressure gradient effect in the turbulence

model and in the wall functions. However, the thickening

of boundary layer in the tail and in the near wake region

is well predicted. It is noted that as shown in these

figures, the change of forebody shape does not seriously

influence the boundary layer development in the region of

middle body, thereby, that in the stern and wake region.

As shown in Fig.VII-16 to VII-18, the predictions of

turbulent kinetic energy agree fairly well with

experimental measurements. However, when the

overprediction of velocity components in the regions of

tail and near wake is considered, the agreements of

predictions with experimental data are not improved

results over the predictions presented in the chapter VI.

If the velocity components are accurately predicted, it is

anticipated that the turbulent kinetic energy in the

regions of tail and near wake will be overpredicted.

Overall agreements between measurements and

predictions made by the present numerical method are

encouraging. For the most of body and near wake region,

the pressure and velocity components are fairly well

predicted. However, some considerations must be made on

the selection of turbulence model especially on the the
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near wall treatment in order to accuately predict the

turbulent quantities for the flow involving pressure

gradient and streamline curvature effects. The use of

more elaborated wall functions or introduction of more

advanced turbulence model is indeed needed to properly

simulate the flow field in these situations. These

improvements on turbulence model are remained for future

study and are not pursued further in the present study.

However, the present calculation method provides the

predictions of whole turbulent flow field past

axisymmetric bodies which are not yet reported in the

literature. The present calculations also gives an

example of the successful use of two velocity staggered

grid method in the calculation of fluid flow in complex

geometry which has not been reported in the literature

since the original works of Maliska and Raithby [30].
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CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

A numerical study of laminar and turbulent flow past

finite two dimensional and axisymmetric bodies is

presented. The available calculation methods for

incompressible flow in a complex geometry, grid generation

techniques and turbulence models are discussed. The

numerical formulations and grid generation techniques and

solution procedures employed in the present study are

presented. Calculations are performed for laminar and

turbulent flow past a thin flat plate, turbulent flow past

axisymmetric bodies with changing body shapes, solution

domains, turbulence models and numerical methods. Major

contributions and findings of present study may be

summarized as follows;

(1) Wake function method for the prediction of

turbulent flow past a flat plate is developed. An

accurate prediction of wake flow past a flat plate is made

without the detailed calculations of the near wall region

and the laminar wake region.

(2) Numerical solutions of a complete flow field

past a finite flat plate and axisymmetric bodies which
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include the leading edge interaction, the boundary layer

development on the body, the traling edge interaction and

the wake development, are obtained. The influence of

inlet boundary conditions and the location of inlet

solution boundary on the solution which is observed in the

half body calculations is removed in the full body

calculation. It is observed that the magnitude of the

leading edge interaction is large, but the interacting

zone is confined to a relatively small region. It is also

found that the partially parabolic form of Navier-Stokes

equations is not appropriate for the simulation of the

strong leading edge interaction although it is suitable

for the simulation of the boundary layer on the body, the

trailing edge interaction and the wake development.

(3) Comparisions of predictions by the finite

analytic method and by the finite volume method are made.

Although the finite analytic method gives better

convergence histories and more accurate predictions, the

differences are found to be quantitatively very small.

Both methods well predict the important features of flow

field. It is observed that the finite volume method

always slightly overpredicts the velocity components on

the boundary layer as well as in the wake region.
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(4) It is found that use of one velocity staggered

grid method with finite volume method gives a limit in

convergence. The introduction of two velocities staggered

method removes this deficiency. However, the two velocity

staggered grid method requires more storage, more

computing time and complicated programing.

(5) The defect of the k - e turbulence model with

the Couette flow type wall function method for the

prediction of transition of laminar flow to turbulent

flow, turbulent boundary layer involving pressure gradient

and streamline curvature effects is addressed. A strange

transition near the leading edge was predicted and the

velocity components are overpredicted in the adverse

pressure gradient boundary layer region. As compared with

the Couette flow type wall function method, the two-point

wall function method well predicts the velocity components

in the adverse pressure gradient boundary layer region by

use of the general law of the wall in which the pressure

gradient effect on the flow in the wall region are taken

into consideration. However, the use of the general law

of the wall is limited and can not be confidently applied

to the laminar flow region near the leading edge and the

favorable pressure gradient region. It is observed that

the turbulent kinetic energy are overpredicted in the tail
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region of axisymmetric bodies. This fact shows the the

defect k - E turbulence model in the simulation of flow

field involving pressure gradient and streamline curvature

effects.

(6) Improvements of predictions by the introduction

of two-layer turbulence model are observed. The

predictions by the two-layer model not only provide the

numerical solutions of viscous-affected near wall region

without excessive computational efforts, but also the two-

layer model can be applied to separated flow region where

the wall function method can not be confidently applied.

The use of two-layer model is highly recommended.

However, it is found that the two-layer model slightly

overpredicts the velocity components in the tail region of

axisymmetric bodies.

Although present calculation methods are sucessfully

applied to the simulation of various flow situations,

there exist much rooms for further investigations which

may be summarized as follows;

(1) The one velocity staggered grid method used in

chapter VI has limitations in the general applications.

The two velocities staggered grid method employed in the

chapter VII removes the ditficulties encountered in the

use of one velocity staggered method. However, this
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method requires a complicated programing, more storages

and a more computing time. An introduction of newly

developed calculation methods like algebraic manipulation

method by Karki and Patankar [36] or the momentum

interpolation method by Majumdar (19] will be alternative

choices for removing these deficiencies. The introduction

of these methods are straightfoward. The use of multi-

grid method will improve the convergence.

(2) The origin of overprediction of velocity

components in the tail region of axisymmetric bodies in

the two-layer calculations should be clearly investigated

in order to confidently apply this turbulence model to

general flow situations.

(3) The introduction of more advanced turbulence

model, or at least more elaborated wall functions is

needed for the proper prediction of complete turbulent

flows past two dimensional or axisymmetric bodies. The

use of two-layer model in this purpose may be an

appropriate choice although it is questionable whether

this model may properly simulate the transition of laminar

flow to tur'ulent flow.

(4) The present calculation methods can be easily

applied to three dimensional situations with minor

modifications.
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Table 1. Definition of Variables

0 r 0S.0
S -DR + a + 1 a ( v 2Dk

g + t ax ax(efaxx r r- rfay 3

v g + t - ()R + i x( efU )  + - (rgef y) - 2acA ef - 2ak
ay ax~gefay~ ry ay -rf2 )3ay

k g + G -p
ak

At e £

+cejG k Pe C~k

a (av*\2 (x2 (a+ v ~ 2
G = ef 2  + 2 + 2 ac + x)J

k2
ef = + t , At = CA p

CA - 0 .-0 9, Cyk =10, (YE = 1.3, Ce, = 1.44, Ce2 = 1.92.

ac =0, r = 1 for Cartesian coordinate system.

ac 1 , y -- r for cylindrical coordinate system.
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Table 2. Solution Domains for Calculations in Chapter-IV

Type of Flow Re Grid Xa X d  Ya
1 d

Turbulent 2.48x10 6  57x31 -0.6 8.57 1.0

Re = Reynolds number based on the free stream velocity

and body length.

Xi = location of upstream boundary.

Xd = location of downstream boundary.

Yu = location of upper boundary.

aThe origin of coordinate system is located at the trailing
edge of plate.

Table 3. Solution Domains for Calculations in Chapter-Va

Type of Flow Re Grid Xi Xd Yu

Laminar 105 135x35 -1.25 14.6 12.7

Turbulent 2.48x10 6  120x41 -1.15 12.3 3.9

avariables defined in Table 2 and text.
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Table 4. Solution Domains for Calculations in Chapter-VIa
( Wall Function Method )

Type of Body Re Grid Xi Xd YU

Afterbody-1 6.6xi0 6  96x35 0.5 10.9 1.60

Afterbody-2 6.8xi0 6  96x35 0.6 10.9 1.55

Afterbody-5 9.3xi0 6  96x35 0.6 10.9 1.15

avariables defined in Table 2 and text.

Table 5. Solution Domains for Calculations in Chapter-VIa
( Two Layer Model

Type of Body Re Grid Xi Xd YU

Afterbody-1 6.6xi0 6  85x53 0.5 6.75 3.64

Afterbody-2 6.8xi0 6  85x53 0.6 5.60 3.71

Afterbody-3 6.0x10 6  90x53 0.6 12.4 4.20

Afteztody-5 9.3xi0 6  85x53 0.6 5.60 2.73

avariables defined in Table 2 and text.
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Table 6. Solution Domains for Calculations in Chapter-VIja

Type of Body Re Grid Xi Xd Y

Afterbody-1 6.6x10 6  151x36 -2.23 9.29 1.77

Afterbody-2 6.8xl0 6  151x36 -2.23 9.29 1.80

Afterb ody-3 6.0x106  151x36 -2.23 9.29 2.04

Afterbody-5 9.3xl06  151x36 -2.23 9.29 1.33

avariables defined in Table 2 and text.
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Fig.II-1. Solution Domains.



162

a) Flat Plate

=reeeeee-------- --------

d(4A) d(4B)

.. . - - -

4 - A 4 - 4

b) Axisymmetric Body

Fig.II-2. Notations for Grid Generation.
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APPENDIX

COMPUTER CODES



Computer Code for Chapter-VI

1. Wall function Method

1-1) Geometric Data Files

1-2) Computer Program for the Generation of
Boundary-Fitted Coordinates

1-3) Computer Program for Flow Calculation
by Finite Analytic Method

1-4) Computer Program for Flow Calculation
by Finite Volume Method

2. Two-Layer Model

2-1) Geometric Data Files

2-2) Computer Program for the Generation of
Boundary-Fitted Coordinates

2-3) Computer Program for Flow Calculation
by Finite Analytic Method
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computer Code for Chapter-VII

1. Full Body Calculation

1-1) Computer Program for the Generation of
Body Shape and X-Coordinates

1-2) Geometric Data Files
( Generated by Program 1-1

1-3) Computer Program for the Generation of
Boundary-Fitted Coordinates

1-4) Computer Program for Input Data for
Flow calculation

1-5) Computer Program for Flow Calculation
by Finite Volume Method
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